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ABSTRACT

A digital simulation which models certain aspects of the
human speech-production process is developed from fundamental
principles. Specifically, the transmission of sound in the
vocal tract is modeled as quasi-one-dimensional acoustic

wave propagation in a nonuniform time-varying tube with
yielding walls. The vocal tract is terminated by a radiation
load based on a simplified model of a piston in a baffle.

The formulation of the model is developed in two stages. The
first stage is the formulation of a mathematical description
of the physics of sound propagation in the vocal tract. This
description takes the form of a system of partial-differential
equations and boundary conditions derived from fundamental
physical principles. The simplifying assumptions invoked in
the derivation, together with the conditions for which they
are valid, are clearly stated. The second stage of the
modeling process is the actual implementation of the modelj
that is, the formulation of finite-difference equations
derived from the differential equations and the solution of
these equations on a digital computer. In this latter stage,
techniques and insights from digital signal processing and
numerical analysis prove valuable and provide novel approaches
to some of the modeling problems.
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CHAPTER I

Introduction

The production of speech and speech-like sounds
had been attempted as early as nine-hundred years ago,l but
it was not until the late Eighteenth Century that the first
analog of the speech production mechanism was demonstrated.
In 1779, the Imperial Academy of St. Petersburg awarded its
annual prize to C. G. Kratzenstein for demonstrating the
physiological differences among five vowels. Kratzenstein
constructed a model of the speech production mechanism
consisting of a system of acoustic resonators excited by
vibrating reeds.2 In 1791, von Kempelen3 demonstrated a

more sophisticated speaking machine capable of producing

connected utterances. In later years, many notable scientists

including Wheatstone,LL Helmholtz5 and Alexander Graham Bell6

became interested in the problem of artificially producing
speech.

Although the first speech synthesizers were, for
the most part, objects of curiosity and playthings, they
did provide some insight into the mechanisms of speech
production and perception. Today, interest in synthetic
speech is not only motivated by a desire for a better under-
standing of the natural speech processes, but also by more
practical considerations viz., the need for efficient means
of storing and transmitting the information contained in

speech signals. Moreover, the successful medical diagnosis
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and treatment of speech disorders can be facilitated by a
clear understanding of the critical parameters of the speech
production mechanism. It is, then, applications such as
these that provide the present motivation for modeling the
human articulatory system.

The principal features of the human vocal apparatus
are shown in the sagittal-plane X ray of Fig. 1.1. The vocal
tract is a nonuniform acoustic tube which, in the adult male,
is approximately 17 cm in length. It is terminated at one
end by the lips, and at the other end by the glottis. In
addition, the vocal tract may be shunted by the nasal tract
through the trapdoor action of the velum.

Figure 1.2 shows a schematized diagram of the vocal
apparatus which will be the basis of the present simulation.
Also included in the figure is the subglottal system consisting
of the lungs, bronchi, and trachea. The lungs are represented
as the air reservoir at the left of the diagram. The pressure
of the air in the lungs, Ps’ is increased by application of
muscular force from the thoracic muscles thus producing a
flow of air with volume velocity Ug through the glottis. The
vocal cords are modeled as a Jsystem of coupled mechanical
oscillators driven by the subglottal pressure and the local
Bernoulli pressure resulting from the air flow through the
glottal orifice. The vecal tract and nasal tract are
modeled as nonuniform acoustic ducts with yielding walls.

An acoustic wave propagates through this system and generates

a radiated wave at the lips and nostrils. The speech signal
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is then taken as a linear combination of the pressure waves
radiated at the lips and nostrils.
Recently, considerable effort has been applied to

modeling the vocal cords. 11

Therefore, this paper will
be concerned primarily with modeling the vocal tract and
radiation load at the lips and nostrils. The formulation of
the model will be developed in two stages. The first stage
of the modeling process consists of formulating a mathematical
description of the physics of sound propagation in the vocal
tract. This description is in the form of a system of partial-
differential equations and boundary conditions derived from
such fundamental physical laws as the conservation of mass
and the conservation of momentum. The approximations made
at this level are based primarily on physical considerations
and previous experience modeling acoustic systems. The second
stage of the modeling process is the actual implementation of
the model; that is, the formulation of finite-difference
equations derived from the partial-differential equations and
the solution of these equations on a digital computer. At
this level, approximations are based primarily on mathematical
considerations and draw on previous experience from numerical
analysis and digital signal processing. In fact, some of
these considerations, such as numerical stability and round-
off noise, have no '"physical'" basis at all.

It is this latter aspect of the modeling process
that has often received too little attention in previous

vocal-tract simulations. As an example, consider the following
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analysis which demonstrates the unsuitability of a common
approach to the problem of simulating the acoustic transmission
properties of the vocal tract. According to this approach,

the vocal tract is approximated as a piecewise uniform acoustic
tube, each section cf which is approximated as a cascade of "T"
networks containing analogous circuit elements.* The resulting
lumped-parameter network is then simulated by replacing the

time derivatives by backward (finite) differences. For
simplicity, suppose the vocal tract is modeled as a lossless
uniform acoustic tube with rigid walls. The analogous network
based on cascaded "T" sections is shown in Fig. 1.3. The
analogous inductance per unit length is given by L, the analogous
capacitance per unit length by C, and the current in the kth

loop by Uk(t). The loop equation for the kth current loop

gives

Ue_1(8) - 20, (s) + U, 1(s) = LCAX"s Uy (s)

where ﬁk(s) is the complex amplitude (Laplace Transform) of

U (t). Therefore,

5> 47U, (t)
U1 () = 20 () + Uy () = LCAx — (1.1)

Replacing the time derivative with a backward difference gives

*
With voltage and current being analogous to acoustic
pressure and volume velocity, respectively.
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n n _ 1 ({n ,n-1, n-2
Up_q - 2U + Uy = z (Uk~2Uk Uy > (1.2)
where
Up = Uy (t=nAt)
and

Fow(® -2@

Equation (1.2) is the equation which is solved, in an appro-
priate domain, to obtain the simulation.

We assume a solution of the form

Uﬁ _ AejﬁkAx+snAt. (1.3)

This ansatz is chosen so that any allowed spatial distribution
at a particular time t = nAt can be synthesized as a Fourier
sum (or integral) over the modes specified by B. Substituting
the ansatz in Eq. (1.2) it is clear that it satisfies this

equation if and only if B and s are related by the characteristic

equation
o280t _ pemSAL |y Mng sin® <§%£> =0 (1.4)
Thus,
e™58% _ 1 1 joq sin <ﬁ§§> . (1.5)

Letting s = o + jw and equating the real and

imaginary parts of Eq. (1.5) gives
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Q
i

- §%€ 1in [l+@n2 sin” <E§§>]

_ 1 -1 . BAX
w =% AT tan [2ﬂ sin < = >J
Therefore, a particular mode with wave number B decays as

exp |- 2-1n(1+4ﬂ2 sinQBAx/?)]. Since Re(s) < 0, Eq. (1.2) is

12

stepwige stable for all values of the sampling ratio (which

is proportional to M). In addition, the simulation can be
shown to be pointwise stable.13
It is well known however, that the volume velocity

of an acoustic wave propagating in a lossless uniform hard-

walled duct obeys the wave equation

3%y 1 2°
= L ] l .7
ox ;g Bt§ ( )

Consequently, the finite-difference Eg. (1.2) is a simulation
of Eg. (1.7) obtained by replacing spatial derivatives by
divided central differences and time derivatives by backward

differences. If the ansatz

et ]
U(x,t) = A'edP X5 T (1.8)

-

is substituted into the partial-differential Eq. (1.7) we
find

= +g8'/c

and
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Thus, the modes of Eg. (1.7) oscillate periodically
in time (the physically correct behavior), whereas the modes
of the discrete-variable simulation decay exponentially.

This phencmenon is called stepwisc overstability and the error

12 Because of this

that it introduces can be quite large.
improper damping, it is expected that a vocal-tract simulation
based on "T" sections and backward differences will result
in formants with excessive bandwidths, and is therefore unde-
sirable in spite of its stability, and in spite of the fact
that the approximate solution will converge to the true
solution as the sampling rates are increased. The point of
this example is simply that one must use considerable care
when modeling a continuous system as a discrete system and it
is not sufficient to rely solely on intuitive arguments.

In addition to the philosophical reasons for
drawing a distinction between the two stages of the modeling
process, there is also a practical reason. Once a particular
simulation has been implemented, it is not immediately obvious
how to evaluate it, and should it be found inadequate, how
to determine at what level the inadequacy originates. By
separating the modeling process into two steps, it is possible
to investigate the characteristics of each step independently.
The adequacy of the partial-differential equations to describe
the physical system may be investigated by using very accurate,
albeit inefficient, numerical techniques, or by transforming

the equations to the frequency domain and investigating the
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behavior of the eigenmodes of the system. The properties

of a particular finite-difference formulation, on the other
hand, may be investigated from a numerical analysis or
digital-signal-processing viewpoint, independently from the
specific physical model. 1In fact, from such an analysis

it is possible to predict the effects of a particular simulation
on the physical model. An illustration of this kind of

analysis is the previous discussion of an acoustic tube modeled
as a cascade of "T" networks, though a more general approach

is suggested in Appendix A.

This thesis presents the formulation of a vocal-
tract simulation which models certain aspects of the speech-
production process. Specifically, the transmission of sound
in the vocal tract is modeled as quasi-one-dimensional*
acoustic wave propagationfén a nonuniform time-varying tube
with yielding walls. The vocal tract is excited by, and
interacts with, a self-oscillating two-mass model of the
vocal cords.ll The vocal tract is terminated by a radiation
load based on a simplified model of a piston in a baffle.

In addition to the obvious objective of ultimately
realizing a carefully formulated and accurate digital simulation

of the vocal tract, this thesis has several other important

The term quasi-one-dimensional is used to emphasize that
acoustic wave propagation in a duct with yielding walls
cannot be strictly one dimensional, since the wall motion
introduces a pressure gradient in the transverse direction.
However, when the wavelength of this transverse mode is
large compared with the diameter of the duct, the transverse
pressure gradient may be treated as a second-order effect.
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objectives. The formulation of the mathematical model for
acoustic transmission in the vocal tract begins with funda-
mental physical laws and is developed in such a manner that
each of the underlying assumptions and approximations intro-
duced is clearly stated. " Moreover, in developing from this
model a discrete-variable simulation, suitable for implementa-
tion on a digital computer, techniques and insights drawn
from digital signal processing and numerical analysis prove
valuable and provide novel approaches to some of the modeling
problems. It is felt that some of the approaches suggested
by these techniques might be applied profitably to other
simulation problems as well.

In Chapter II, a mathematical description of
acoustic wave propagation in the vocal tract is formulated.
This description is a set of partial-differential equations
derived from fundamental physical principles. The simplifying
assumptions invoked in the derivation, together with the
conditions for which they are valid, are clearly stated. In
addition, an equation of motion describing the wall vibration
is derived, assuming small oscillations about equilibrium.

In Chapter III, a mathematical description of the
effects of radiation at the lips and nostrils is given. The
model is based on a simplification of the well known radiation
impedance for a piston in baffle.lu The model leads to an
algebraic equation in the frequency domain suitable as a
boundary condition for the frequency-domain solution of the

vocal-tract equations (eigenvalue problem) and also leads to
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an ordinary differential equation suitable as a boundary
condition for a time-domain solution.

In Chapter IV, the partial-differential equations
derived in Chapter IT are transformed to ordinary differential
equations in the (temporal) frequency domain. A two-point
boundary-value problem is formulated assuming an ideal current
source at the glottis. The problem is solved numerically and
the glottis-to-mouth transfer ratio Um/Ug is computed. Further-
more, this formulation is of interest for it allows the
investigation of the behavior of the eigenmodes of the vocal
tract.

In Chapter V, the partial-differential equations
derived in Chapter II are written as partial-difference
equations in discrete variables. The formulation chosen is
an implicit formulation equivalent to integrating the
equations by the trapezoid rule in both the time and space
directions. The equation of motion for the vibrating duct
wall is transformed to a difference equation using the
technique of impulse invariance.15

The first part of Chapter VI discusses several
simulations of the radiation load. The radiation impedance
is calculated and plotted for each of the simulations and
it is apparent that the simulation corresponding to integration
by the trapezoid rule is superior. The remainder of the
chapter gives a brief description of the two-mass model of

the vocal cords recently described by Ishizaka and Flanagan.ll
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In Chapter VII, a complete simulation is discussed.
The system of equations for sound transmission in the vocal
tract is written compactly in matrix form and a procedure is
given for solving these equations simultaneously with the
equations for the glottal system, given by Ishizaka and
Flanagan.

In Chapter VIII, some experimental results are
presented, the significant results of the present study are
summarized, and some areas for further study are suggested.

In addition to the main body of the thesis there
are two appendices which discuss topilcs of global significance.
Appendix A presents an interpretation of numerical integration
and differentiation rules as transformations between frequency
spaces. This point of view is profitable because it often
allows one to predict the implications of a particular
simulation in advance and provides an intuitive picture of
distortions that might be introduced by the simulation.
Appendix B presents an efficient algorithm for solving the
complete system of algebraic equations for the simulation

when both boundary conditions are explicitly given.*

When one of the boundary conditions is not explicitly known
(as with the two-mass model or at a junction of three ducts)
a modification of the procedure is given in Chapter VII

which permits the solution of several systems simultaneously.
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CHAPTER II

The Equations of Motion for Acoustic Wave Propagation in the

Vocal Tract

The equations of motion for acoustic wave propagation
in the vocal tract will now be derived from the fundamental
physical principles of conservation of mass and conservation
of momentum. The vocal tract is modeled as a nonuniform time-
varying duct with yielding walls and the wave motion is
considered as essentially plane-wave propagation with
perturbations introduced by the yielding walls.

The quasi-one-dimensional model is justifiable for
several reasons. It is a universally used model and is valid
so long as the wavelength of sound is large compared with
the transverse dimensions of the vocal tract.l6-21 The
validity of this assumption does, however, become border-
line at the highest audible frequencies. A one-dimensional
model is desirable in order to keep the equations simple
enough to be used in a simulation and the question remains
to be answered: Jjust how accurately can observed phenomena
be accounted for with such a model? By far the best justi-
fication of the one-dimensional model is the recent work by
Lesser and Lewis.22 They have shown, using modern perturbation

theory in the form of matched agsymptotic expansions, that the
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first-order correction term to the Webster Horn equation® at
an abrupt change in the duct cross section is very small.
This means that the one-dimensional model is valid over a
wider range of duct cross sections than would be expected
from the classical theory.

The internal energy losses in the fluid, due to
viscosity and thermal conduction, will also be neglected.
The losses in the bulk of the medium are negligible because
of the small coefficient of viscosity and thermal conductivity
of the air in the vocal tract. The losses in the boundary
layer at the duct wall can be shown to vary inversely as the
three-halves power of ductfs cross-sectional area and
directly with the square root of the sound frequency.lu’l9
In the case of laminar (nonturbulent) flow, for the cross-
sectional areas and frequencies of interest, the effects
of the boundary-layer losses are small when compared with
the losses introduced by the yielding walls and radiation
impedance. If these losses are included, the equations of
motion are modified by the addition of a frequency dependent
resistive term.lu’19

The yielding wall of the duct is considered as

locally reacting. That is, adjacent surface elements are

The Webster Horn equation:
1 9 dp| _ 1 9
A(x) ox {A( ) 35} B ZE'E;B

describes an acoustic pressure wave p(x,t) propagating in a 23
loss free horn with rigid walls and cross-sectional area A(x).
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not strongly coupled and hence there is no wave propagation
in the wall itself. The wall motion not only introduces loss
due to the real part of the (mechanical) wall impedance, but
results in dispersive propagation of the acoustic wave and
allows for pressure build-up and vocal-cord vibration with the
lips closed.

A sufficient set of quantities for describing acoustic
wave propagation in a fluid such as alr is the density p, the
pressure P, the temperature T, the entropy S, and the local
or particle velocity V of the fluid.lLL These quantities are
interdependent and related by equations of state. Since
several approximations are necessary to model the vocal tract
as an essentially one-dimensional system, the equations will
be derived in their general form, as a system of nonlinear
partial-differential equations in three spatial dimensions,
and then reduced to a one-dimensional system in such a manner
that each approximation and its rationale is clearly stated.

In this way, should the present model prove inadequate, or

a more detailed model be desired, it is only necessary to
return to the derivation and relax the appropriate assumptions.
The general nonlinear set of state equations in three dimensions
will be derived first, then linearized about the equilibrium
values of the state variables, and finally applied to a non-
uniform time-varying acoustic tube.

Using Newton's Second Law (fémg), we can write the
equation for conservation of fluid momentum. We must be

careful, however, to write this equation in the rest frame
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of the fluid, and then properly transform it to the fixed or
"lab" frame. Consider a differential mass element of the
fluid dm = pdT (dT represents a differential volume element).
This element may deform with time, but its mass remains
constant. If the mass element is acted upon by a force

F = —S?dT and its velocity is Vi then its momentum is deT

and Newton's Second Law gives
- D -
-VPdtT = -]—)-E- (deT) (2.1)

where %% denotes the '"convective-derivative" and indicates
that the quantity being differentiated is measured in the
2k

"proper" or rest frame of the fluid. Since the mass dm,

by definition, remains constant with time,

o
D
e (pdT) =0
and Eq. (2.1) becomes
DV
-VPdT = P -]—)E- dt
hence
= DV
-VP = P 'D-.E' (2.2)

Finally, since the operator %% transforms to the lab frame
as é%-+ 335: the equation for conservation of fluid momentum

is

VP = p g-‘é + pV-yV (2.3)
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The second equation of motion is derived from the
conservation of total fluid mass and will be written in
integral form. Consider a deformable macroscopic region of
fluid 7 bounded by the closed surface 3?. Denote a volume
element in this region by dt and a surface element of the
boundary by dg = ndo defined by the outward pointiﬁg unit

normal vector n. The total mass contained in T is given by

total mass _
in volume 7T *JTJ pat
T

and the net rate of flow of mass into T by

rate of mass _ R
flow into T = '4j§4 pV-dao
T

If there are no sources or sinks in T, then the net rate of
flow of mass into T must be equal to the time rate of increase
of mass contained in T, thus

T T

This is the equation of continuity, in integral form, for
the fluid mass.

Equations (2.3) and (2.4) are nonlinear equations
in the quantities P, V and p. We now seek and third relation
among these quantities and linearize the resulting set of
equations about the equilibrium values of the variables.

Assume that with no passage of sound the fluid is in
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equilibrium and denote by Pys 7;, and Po the equilibrium
values of the pressure, velocity, and density of the fluid.
Now, the propagation of sound through the fluid causes

small perturbations in these quantities (denoted by p, ;, p')

so that we may write

P = Po + D
= - -
V = VO + Vv
and
p— + 4
P = PO (Y

For sound frequencies below about 109 Hz, the
compression of a gas due to the passage of a sound wave is

approximately adiabatic i.e., the entropy content of the gas

remains nearly constant during the com.pression.ll‘L Thus we
may write
’
P = PP
and
p = pO + pOKBP (2'5)

where Ky is the adiabatic compressibility of the fluid.

We now substitute P = PO + D, 7 = V; + 3, and
p = py(l+x p) into Egs. (2.3) and (2.4) neglect all products
of the perturbations, and observe that the equilibrium values

must satisfy the appropriate equations (2.3 and 2.4) at
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equilibrium. Equation (2.3) becomes

- a? - o

-Vp = po 3¢ + PV, VY (2.6)

and Eq. (2.4) becomes

_ff:i_) P, (V+x DV, )-d0 = - m po(1+x p)dT

T T

or since p is a constant

B Gty g]]] e en

T

Equations (2.6) and (2.7) will now be applied to
a nonuniform time-varying duct with yielding walls. Consider
the incremental length Ax of duct shown in Fig. 2.1. The
surface corresponding to the duct wall, between parallel planes
at x and x + Ax, is denoted by Z and the cross-sectional area
at x is denoted by A(x). Although A may be time varying,
only the spatial dependency is shown explicitly here. Applying
the conservation of mass equation (2.7) gives

--{Ha [vx+KSpVox]dA -J]’ [v +x DV _, ]dA
A (x+Ax) A(x)

X+AX
.+jJ Paiﬁzd%} = é%J‘ ¢KJI (l+xsp)dA (2.8)

b X A(x)

Since no mass passes through the wall of the duct, the last
integral (over the surface ) on the left-hand side of

Eq. (2.8) vanishes. Dividing both sides of the equation
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FIGURE 2.1
INCREMENTAL LENGTH Ax OF DUCT
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by Ax and taking the limit as AX - O gives

- Al;—% 'A_l?c' {jj [VXWLKspVox](le - JJ [vx+KspVox]dA}
A (X+AX) A(x)
X+A%
=Alxn—>lz) é d—djc-j dx JT (1+x,p)dA
x A(x)
(2.9)

Applying the definition of the derivative to the left-hand
side and the Fundamental Theorem of Integral Calculus to the
right-hand side of Eq. (2.9) gives™

- %J\[ [vx-i-KSpVOX]d_A = %jj (l+KSp)dA (2.10)
‘ A(x) A(X)

Defining the volume velocity at x as

U(x,t) =JJ v dA

A(x)

A(x)

and approximating

gives
U 0 (pA OA d (pA
- 3x T stox_ié%c_l=3?+1(s_j§€l (2.11)

Note that both derivative operators are partial-derivatives
because the functions on which they operate are functions
of both x and t.
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The conservation of momentum equation is applied
simply as follows. We neglect, to first order, the effects
of the radial and circumferential components of the pressure
gradient on the fluid itself. Thus, the laminar (x) component

of Eq. (2.6) gives

B %% = Po g%'<g> * PoVox é%'<£> (2.12)

with the approximation

Equations (2.11) and (2.12) both contain the quantity
A which is not known a priori. Although the cross-sectional
area may be specified at equilibrium (no sound propagation),
" the change in fluid pressure at the duct wall accompanying
an acoustic wave will cause a small change in the cross-
sectional area if the wall admittance is nonzero. Treating

this small change as a linear perturbation, we write
A = AO + BA

where Ao is the equilibrium value of the cross-sectional area
(thus A, 1s the parameter of the model which we are free to

specify). Since BA << A, we write

_U__
Ao+6A

SIS

R

Jﬂci 3>k3
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and

pPA

I

p (A +64)

Q

PA

so that Egs. (2.11) and (2.12) become, respectively

d(pA_) J(A _+BA) 3(pA )
- g% - ¥5Vox axo = gt toKg Eto (2.13)
and
d d (U d (U
B 3% = Po 3?'(3:) T PoVox 3% (K:) (2.1%)

We now proceed to determine the perturbation 8A
in terms of the fluid pressure at the duct wall. Referring
to Fig. 2.2, denote by £(x,t) the normal displacement of the
duct wall from its equilibrium position. If So(x,t) denotes
the duct perimeter at equilibrium (£=0) then the approximate

change in area, 6A, due to the displacement £ is
BA = sog (2.15)

The wall admittance is modeled as a spring force
constant, Kw(x), per unit surface area, a damping constant,
bW(x), per unit surface area, and a mass, M,(x), per unit
surface area. Referring to Fig. 2.3, the equation of motion
for small oscillations about equilibrium for a differential

element of wall area, 4=, is

pds - (K,d2)¢ - (b d2)é = (m dz)f
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A(x,t)= Ag (x,t)+BA(X,t)
s Ag (x,t)+Sg(x,t)€(x,t)

FIGURE 2.2
CROSS SECTION OF TIME-VARYING DUCT

p=My& +byé +Kyé

FIGURE 2.3
MECHANICAL MODEL FOR DIFFERENTIAL SURFACE
ELEMENT dX OF DUCT WALL
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or

p =M é + b

- Wé + k& (2.16)

The solution to Eq. (2.16) may be expressed as the convolution
integral
t
E(x,t) =J} p(x,a)h(x,t-a)da (2.17)
- 00
where h(x,t) is the impulse response of Eq. (2.16) at the
position x along the duct.
It can now be argued that the convective terms of
d .
the form V_. Sx in Eas. (2.13) and (2.14), may be neglected,

, 1s

to a good approximation, when the D.C. flow velocity, Vox

small compared with the velocity of sound, c¢. We know that
in the case of a duct with rigid walls and piecewise constant
cross-sectional area, when there is no D.C. flow, the system
of Egs. (2.13) and (2.14) is satisfied by a superposition

of traveling waves in each section of the form
p(x,t) = p, (x-ct) + p_(x+ct)
and
U(x,t) = U+(x—ct) + U_(x+ct).
Observing that for any function of the form f(xtct)

Qilgéﬁﬂl = * cf'(xict)

whereas
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de(xitct) _y g
Vox = = VI (xfect)

it can be seen that the error introduced by neglecting the
convective terms is small when Vox <L c. It is expected
that the introduction of yielding walls and nonuniform cross-
sectional area should not affect the solution so as to make
this assumption unreasonable.

The final set of equations for sound propagation

in the vocal tract is then the following:

dp _ d (U .
- 5%._ Po 3%'<K:> (conservation of momentum) (2.18)

d (pA
- %% = K ( _;) + %% (conservation of mass) (2.19)
where
A(x,t) = A_(x,t) + So(xst)E(x,1t) (2.20)

and €(x,t) satisfies the differential equation
p(x,t) = M (x)6(x,t) + Db E(x,t) + K, (x)€(x,t) (2.21)

The parameters which msut be specified are:

Ao(x,t) the cross-sectional area of the vocal tract

(at equilibrium)
S, (x5t) the perimeter of the vocal tract (at equilibrium)
Mw(x) the surface density or mass/unit area of the

vocal-tract wall
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bw(x) the damping/unit area of the vocal-tract wall

Kw(x) the stiffness or spring force constant/unit
area of the vocal-tract wall

Po the air density17 = 1.14x1073 gm/cm3 (moist air
at body temperature 37°C)

K the adiabatic compressibility of air which will

be shown to be given by

where c = 3.5><10LL cm/sec, is the speed of

sound in moist air at body temperature, 37°C.

It will now be shown that if the duct wall is rigid
and the cross-sectional area is time invariant, then the

system of Egs. (2.18) and (2.19) reduces to the familiar

Webster Horn Equa’cion.e3 Since g% = O we can write

- %% - r‘()% %—% (2.22)
and

- en) B (2.23)

Multiplying Eq. (2.22) by A(x) and differentiating with respect
to x gives

2
- h 8] -6, 22 (2.2)

Differentiating Eq. (2.23) with respect to t gives
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2 2
d U )
- m = KSA(X) (2.25)
ot
3
Finally, eliminating the mixed partial derivative, SST ¢
in Egs. (2.24) and (2.25) gives
Lo ax) L =« af_g (2.26)
Alx) 3x x| T ¥sPo 3t :
which is recognized as the Webster Horn equation with
-« (2.27)
EE sPo :

where ¢ is the vélocity of sound in the horn.

In this chapter we have derived a set of linear
partial-differential equations describing quasi-one-dimensional
acoustic wave propagation in a nonuniform time-varying duct
with yielding walls. These equations will be used to simulate
sound propagation in the vocal tract under the assumptions
that

1. the transverse modes of propagation are small (valid
so long as the wavelength is larger than the duct cross
section);

2. the acoustic wave may be treated as a linear perturbation
of the acoustic medium (valid as long as amplitude of
the pressure wave is small compared with the ambient
pressure) ;

3. the D.C. velocity is small compared with the speed of

sound;
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the losses due to the viscosity and thermal conductivity

in the medium bulk and boundary layer are small,
especially when compared with loss due to the glottal
impedance, radiation impedance, and finite wall
impedance (valid for laminar flow, sound frequencies
less than about 109 Hz, and cross-sectional areas
greater than about 1 cme);

the vocal-tract cross section doesn't change "too
rapidly" in the x direction (recent work by Lesser and
Lewis indicates this approximation is better then
expected from classical theory);

the elements of the vocal-tract wall are locally
reacting i.e., adjacent elements are not coupled;

the vibration of the vocal-tract wall may be treated

as "small oscillations" about equilibrium.
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CHAPTER III

The Radiation Load at the Mouth and Nostrils

The partial-differential equations derived in
Chapter II describe the vocal tract as an acoustic trans-
mission line. It is a well known result from the study of
boundary-value problems that the eigenmodes of such a
system are determined by both a differential (or integral)
equation describing the system and the specification of a
suitable set of boundary conditions. In this chapter we
derive the boundary condition corresponding to the radiation
load at the mouth or nostrils.

The mechanism whereby acoustic energy is radiated
by the articulatory system and diffracted about the head is
indeed complicated. However, we must remember that the
eignemodes of the vocal tract are determined by the impedance
"seen" by the vocal tract looking toward the outside world.
Thus, a reasonable model for the radiation load at thoa mouth
(or nostrils), consistent with the one-dimensional assumption
of Chapter II, is the radiation impedance for a pilston set in
the side of a rigid sphere. The expression for this impedance
is derived by Morse and Ingardlu as an infinite series of
various spherical harmonics, and cannot be written in closed
form. In a word, even this simplified model is algebraically
intractable.

As a second approximation, we assume the diameter

of the piston is small compared to the diameter of the sphere.
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In this case, we choose for the radiation load the radiation
impedance for a piston set in an infinite plane baffle which
is expressible in closed form.lu A comparison between the
radiation impedances for a piston in a spherical baffle and

a piston in a plane baffle shows that the change from a
spherical to a plane baffle makes little change in the average
impedance load on the piston, although the radiation direc-

14

tionality patterns differ considerably. The radiation
impedance for a piston set in an infinite plane baffle,
expressed as a normalized acoustic impedance Z, = ZA/ZO =

B

is given by

-

z, = 6, + dX,

1

60 =1 - '|1" Jl(2LL)
/2
X, =J sin(2ucosa)sin“ada = T H (20) (3.1)
o}
where L = ka = 99-, k = 3%-: L is the wavenumber, a 1is the
c c
radius of the piston, A is the area of the piston, J;(21) is
the first order Bessel functionzu of the first kind given
by
[o¢]
2m+1
_ (-1)"™
e =) Ry (3-2)
m=0

and Hl(Eu) is the first order Struve function25 given by*

F(emtl)tt = (2m41)(2m-1) ... 5-3-1
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SIS

e -1 m o 2m+2
Z '(ﬁrjnﬁ'}"'g'l%hﬁ' (3.3)

m=0

Hl(2u) =

We can thus write

00

(_l)mu2m+2

o~ mi(m+l)!
m=0

2 b 6
= 5T - ZrgT * 3T - (3.4)

and

[o¢]

n _1)M(o 2m+1
Xo =7 ;; (2£+13!§(g%+3)!z

m=0

_Ahfaw o (20)3 | (ewp 3.5
W'[TT 32_5 32.52.7 ] (3.5)

Now consider an approximation to 2, given by
¥ o= ol (3.6)

where a and p are constants to be determined. If both numerator
and denominator of Eq. (3.6) are multiplied by 1-jB and the
result expanded as a Taylor series in the variable (au)? we

have

_ Jak(1-3BK)
1+(pu)=

¢

(apr®+gam) [1- (p) 2+ (ai) - (a) . .. 1. (3.7)
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Writing
AN 2 (3.8)
gives
Y = ap [1°- 52u4+a4u6- .1 (3.9)
and
% = alu-pZudeaud-. .. (3.10)

If we set a = 8/3m and B = 37/16, then the lowest
order terms in the expansions for %o and Yo correspond with
those of 60 and X - Since K = ka = 2ma/N, the higher order
terms in the expansions (3.4, 3.5, 3.9, and 3.10) become
decreasingly small under our assumption that a << A. Moreover,
the higher order terms of 30 and Yo have the same exponential
dependence as those of 90 and xo‘

As a simplified model for the radiation load we

use the analogous impedance derived from %n’ that is,
. 8
Po J = M
< c) ( A§> .3;% (3-11)
143 STy 33

Substituting L = 22 , gives

(]
( é) <3§ga . (3.12)

1+jw
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Observing that the impedance of a resistance and inductance
in parallel is

R
the normalized acoustic impedance, En’ associated with Eq.
(3.12) may be interpreted as an analogous inductance of
8a/3mc in parallel with an analogous resistance of 128/9v2.
In order to be used as boundary condition for the
wave equations derived in Chapter II, Eqg. (3.12) must be
transformed to the time domain. Using the usual analogy
of acoustic pressure to electrical voltage and acoustic
volume velocity to electric current, Eg. (3.12) may be

written in the time dowain as the integral equation

t
A 1 p(t)
U(t) = ———-[————1[ p(a)da + ] 3.14
( Po® Llrag _ (@) Rraa ( )
where

r . 128

rad 5;?

8a

Lyad = 3mc

Equation (3.14) is then the desired boundary condition for

the radiation load at the mouth or nostrils.




ha,

CHAPTER IV

Frequency-Domain Solution of the Vocal-Tract Transmission

Fquations

If the vocal-tract configuration is constrained
to be static, then the steady-state solution to the vocal-
tract transmission equations (2.18 - 2.21) can be obtained
by transforming the equations to the frequency domain. These
equations, when expressed in the frequency domain, become
a system of first-order ordinary differential equations; and
together with the appropriate boundary conditions define a
two-point boundary-value problem.26’27

The frequency-domain solution of the vocal-tract
transmission equations is of interest for several reasons.
Since the solution to the equations in the frequency domain
is the steady-state acoustic pressure and volume-velocity
distribution for a complex exponential excitation, we can
observe these distributions for arbitrary frequencies. We
can also compute such quantities as the driving-point
impedance of the vocal tract and the glottis-to-mouth trans-
fer ratio. Not only are such data of interest themselves,
but they can alsc be compared with spectral data obtained
from real speech and thus provide an additional basis for
evaluating the vocal-tract model. Finally, since the viscous
and thermal boundary-layer losses are expressed simply in

the validity of neglecting these losses may be checked.
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The vocal-tract transmission equations are trans-
formed to the frequency domain by assuming a steady-state

solution of the form
p(x,t) = ﬁ(x,w)ejwt
U(x,t) = ﬁ(x,w)ert

) E(x,t)

£ (x,0)ed®t (4.1)

and substituting this into Egs. (2.18) through (2.21). The
specified cross-sectional area Ao and perimeter SO are
assumed to be time invariant, although the duct wall may

vibrate. This gives

- & = Jap, i% (4.2)
- %% = ijSAoﬁ + ijO€ (4.3)
B = <M E + Jub £ + K E (4.1

Solving Eq. (4.4) for E gives

~

= D
B 2 :
(K-o™™, ) + Jab

AL

_ [ (K - Mw) - Jab ] 5

4.5
T (4.5)

Now € may be eliminated from the equations by substituting

(4.5) for £ in Eq. (4.3) so that




2
R (K -w"™M ) - jwb
- %32'- = jop [KSAO L sOJ (4.6)
(KoM, )" + o™b

Finally, we have

%g +280 =0 (4.7)

XU,y -o0 (4.8)
where

Z = Jwp /A, (4.9)
and

(Kw-weM ) - Jwb
Y = jw ,:KSAO + i1 so] (4.10)
(KoM, )" + o™b

(Note that Z and Y are functions of both w and x.)

In order to assess the effects of the viscous
and thermal boundary-layer losses which were neglected in
the time-domain formulation, Egs. (4.7) and (4.8) may be
modified to include these losses. The frequency-domain
expressions for these losses are well known and derived by
Flanagan.l9 The effects of viscous drag at the duct wall
can be accounted for by the addition of an analogous
resistive term in Egs. (4.7) and the effects of thermal
conduction by the addition of a analogous conductive term in

Eq. (4.8). The modified set of equations is:
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dp .
B .70 480 =0 (4.11)
ab ~ ~
&t Y 4GB =0 (4.12)
where
wp _H
— (4.13)
and

_ S
L
_ g N1l /R
G, =8 (%.14)
a poc2 ECppo

b is the coefficient of viscosity of the fluid, M is the
coefficient of heat conduction of the fluid. TN is the
adiabatic constant of the fluid and Cp is the heat capacity
of the fluid at constant pressure.

The frequency-domain expression for the radiation
load was derived in Chapter III; it is

PoC JwL

ﬁ rad
Z =% = : (4.15)
rad ~ ff A I+jwl,, /K 3

where

= 128/97°

rad

t
I

8a/3mc

rad

A = va2



45.
Equation (4.15) implies the homogeneous condition

g =o. (4.16)

For the purpose of studying the frequency-domain
characteristics of the vocal tract, the boundary condition
of the glottis may be idealized as a Norton equivalent

28

network. Thus we assume a condition of the form

Yp+0=10

o o (4.17)

where Yé is the Norton-equivalent admittance of the glottis
and ﬁg is the equivalent volume-velocity source. If the
glottal impedance is assumed much greater than the input
impedance of the vocal tract then Eq. (4.17) is simply U = ﬁg.
The differential equations (4.7) and (4.8) are now
transformed to a set of finite-difference equations which may
be solved efficiently using the algorithm presented in
Appendix B. Suppose the length of the vocal tract is £. Let
the glottis be located at x = -2 and the mouth at x = 0. We
seek the acoustic pressure and Qolume velocity at N equally
spaced points (k = -N+1, ..., -1,0) on the interval [-¢,0].
The differential equations are transformed to finite-difference

equations according to the rule:

df 1 1
- + g] =0 = = (f-f ) + 3(g.*8. ) =0
[dx x= (-1 ) A Ax txTtk-1 kK Bk-1

(4.18)
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where

AX = &/ (N-1)

H
i

£ (kAx)

gk = g(kAx)

It can be shown that this transformation is equivalent to
integration by the trapezoid rule or to a bilinear trans-
formation in the (spatial) frequency domain (see Appendix A).
The transformation (4.18) is now applied to Egs.
(4.11-4.12) at the (N-1) midpoints between each of the N

sample points to obtain the system of (2N-2) equations:

l ~ ”~ 1 _
& PxPy 1) + 270 + 2, 10, q) =0

s

~ l ”~~ ”~~ _
(Ug-Ugon) + 2(4y By + ¥ 1By 1) =0

Al

K

-N+2, . ..,—l,o

or equivalently,

~ Ax ~ AX —
P+ L0 - By gt G 10 q =0

AX o - AX " —_—
7 Yhy + 0+ Y By -0, =0

k = -N+2,...,-1,0

(4.19)

where Zk is taken to include Ra and Yk is taken to include

G i.e.,

a,
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Z, = 2(kAx) + R, (kAx)

Y.

x = Y(kax) + G (kAx).

We have 2N-2 equations in 2N variables. The two
additional equations necessary for a unique solution are
supplied by the boundary conditions at the mouth (4.16) and
glottis (4.17). The complete system of 2N equations
determining the acoustic pressure and volume velocity distri-

butions is the following:

G‘ “Zyad ] ﬁo | 0 |
1oz, -1z, 0, 0
vo1 Y:l -1 B_q 0
1ozl -1zl 0, 0
v,1 Y, -1 p, | |0
1o Zlye tr o Zlya||One| | O
e 1 Yy -1 Pyl |©
I ¥ 1 | _ﬁ—N+l_ _ﬂg_]
(4.20)

where Z, = %x- Z, and Y, =25y . Although the dimensionality

of the system (4.20) must be large in order to obtain a
very accurate solution, the system can be solved efficiently
with the algorithm of Appendix B since most of the elements

of the matrix are zero.



These equations were solved on the G.E. 635

computer at Bell Laboratories, Murray Hill, N. J. Figures 4.1
through 4.16 show plots of the magnitude of the glottal-to-
mouth transfer ration ﬁm/ﬁg for wvarious cross-sectional area
configurations and various types of losses. In all cases the
pressure and volume velocity are computed at 96 sample points
along the vocal tract, and the glottal impedance is approximated
as infinite. In those cases with yielding walls, the wall

parameters are those given by Flanagan:19

M. = 0.4 gm/cm2

W

b = 6500 dyne—sec/cm3
KW =0

For lack of more precise data, at this time, these parameters
are assumed constant along the length of the vocal tract.
Figures 4.1 through 4.3 show lﬁm/ﬁgl for a 17.5 cm long
uniform tube with a § cm2 cross-sectional area and '"short
circuit" (p=0) at the mouth. Figures 4.4 through 4.6 show
Iﬁm/ﬁgl for the same tube, but terminated with the radiation
load. Figures 4.7-4.16 show Iﬁm/ﬁgl for vocal-tract con-
figurations corresponding to the Russian vowels /a/, /e/, /i/.
/o/, and /u/ (with the radiation load). The cross-sectional
area data were obtained from Fant.go It should be noted

that his data are quantized to the nearest multiple of%ﬂ?
and given at only 35 to 40 points along the vocal tract. The

values of the area functions at intermediate sample points

were obtained by linear interpolation.
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56 FORMANT | FREQUENCY | BANDWIDTH
IST 497.9 5.9
52 2ND 1496.9 10.1
48 3RD 2497.5 13.0
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FIGURE 4.1
MAGNITUDE OF TRANSFER RATIO Um/Ug FOR UNIFORM

ACOUSTIC TUBE WITH RIGID WALL, VISCOUS AND THERMAL
LOSSES, AND TERMINATED IN A SHORT CIRCUIT (pg,=0)
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56
52 |- FORMANT | FREQUENCY | BANDWIDTH
1ST 504.6 53.3
asl- 2ND 15123 40.8
3RD 25157 28.0
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FIGURE 4.2

MAGNITUDE OF TRANSFER RATIO Um/Ug
ACOUSTIC TUBE WITH YIELDING WALL,NO OTHER LOSSES,
AND TERMINATED IN A SHORT CIRCUIT (pm'O)

FOR UNIFORM
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FIGURE 4.3

MAGNITUDE OF TRANSFER RATIO Umn/Ug FOR UNIFORM
ACOUSTIC TUBE WITH YIELDING WALL, VISCOUS AND
THERMAL LOSSES, AND TERMINATED IN A SHORT CIRCUIT
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4.4

MAGNITUDE OF TRANSFER RATIO Um/Ug FOR UNIFORM

ACOUSTIC TUBE WI

THERMAL LOSSES,

TH RIGID WALL, VISCOUS AND

AND TERMINATED WITH PADIATION LOAD



MAGNITUDE Um/Ug (dB)

53.

FORMANT | FREQUENCY | BANDWIDTH
1ST 475.3 57.0
2ND 1426.6 71.4
3RD 2376.4 102.6
4TH 3327.1 144.2
5TH 4280.2 184.6

UNIFORM CROSS SECTION
LENGTH=17.5cm
AREA = 5.0cm2
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|
1000

FIGURE 4.5

MAGNITUDE OF TRANSFER RATIO Um/Ug FOR UNIFORM
ACOUSTIC TUBE WITH YIELDING WALL, NO OTHER LOSSES,
AND TERMINATED WITH RADIATION LOAD
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32
30 FORMANT | FREQUENCY | BANDWIDTH
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FIGURE 4.6

MAGNITUDE OF TRANSFER RATIO Um/Ug FOR UNIFORM
ACOUSTIC TUBE WITH YIELDING WALL, VfSCOUS AND
THERMAL LOSSES, AND TERMINATED WITH RADIATION LOAD
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40
a6 FORMANT | FREQUENCY | BANDWIDTH
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FIGURE 4.7

MAGNITUDE OF TRANSFER RATIO Um/Ug OF VOCAL TRACT
MODEL FOR /a/ INCLUDING YIELDING WALL AND VISCOUS
AND THERMAL LOSSES
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FIGURE 4.8

MAGNITUDE OF TRANSFER RATIO Um/Ug OF VOCAL TRACT
MODEL FOR /a/ INCLUDING YIELDING WALL, BUT
NEGLECTING VISCOUS AND THERMAL LCSSES




MAGNITUDE Um/Ug (dB)

FORMANT | FREQUENCY | BANDWIDTH
30 1ST 415.2 54.0
28} 2ND 1978.5 101.6
o6l 3RD 2810.4 318.3

4TH 3449.9 *
24 5TH 4387.1 172.9

20l /e/

o 1000 2000 3000 4000 5000
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FIGURE 4.9

MAGNITUDE OF TRANSFER RATIO Um/Ug OF VOCAL TRACT
MODEL FOR /e/ INCLUDING YIELDING WALL AND VISCOUS
AND THERMAL LOSSES

¥BANDWIDTH COULD NOT BE DETERMINED BY LOCATING
HALF-POWER POINTS.
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MAGNITUDE Um/Ug (dB)

26l 3RD 2813.9 301.5
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20 |- /e/
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FIGURE 4.10

MAGNITUDE OF TRANSFER RATIO Um/Ug OF VOCAL TRACT
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MAGNITUDE Um/Uy (dB)

59.

40

36 FORMANT | FREQUENCY | BANDWIDTH
1ST 222.8 52.9
2ND 2317.0 59.4
T 3RD 2973.6 388.0

4TH 3968.3 1744
241+ 5TH 4423.8 870.9

20| _ i/
16

-24 1 ] ] ] ] | ] ] ]
o 1000 2000 3000 4000 5000

FREQUENCY (Hz)

FIGURE 4.11

MAGNITUDE OF TRANSFER RATIO Up/Ug OF VOCAL TRACT
MODEL FOR /i/ INCLUDING YIELDING WALL AND VISCOUS
AND THERMAL LOSSES



MAGNITUDE Up/Ug (dB)

40

6C.

36

281

20

121

FORMANT | FREQUENCY | BANDWIDTH

1ST
2ND
3RD
4TH
5TH

226.2 45.1
2319.8 47.3
2981.3 357.7
39723 152.5
4446.9 858.1

/i/

1000

2000 3000 4000 5000
FREQUENCY (H2)

FIGURE 4.12

MAGNITUDE OF TRANSFER RATIO Um/Ug OF VOCAL TRACT
MODEL FOR /i/ INCLUDING YIELDING WALL, BUT
NEGLECTING VISCOUS AND THERMAL LOSSES




61.

44
40} FORMANT | FREQUENCY | BANDWIDTH
1ST 503.5 79.0
36 |- 2ND 849.7 72.3
3RD 2381.7 67.1
32+ 4TH 3644.5 69.6
5TH 4298.4 70.8
28 |-
/o/
o 24t
2
o 20
)
~
§ 16
a
S 12 -
=
& 8
<
=
4 ) \
o J
-4}
—8 -
..‘ 2 -
-16 ] ] l ] ] 1 ! ]
(o) 1000 2000 3000 4000 5000

FREQUENCY (H2)

AND THERMAL LOSSES

FIGURE 4.13

MAGNITUDE OF TRANSFER RATIO Um/Ug OF VOCAL TRACT
MODEL FOR /0/ INCLUDING YIELDING WALL AND VISCOUS



MAGNITUDE Um /Ug (dB)

62.

44

a0l FORMANT | FREQUENCY | BANDWIDTH
1ST 505.7 70.8
36 |- 2ND 854.8 60.5
3RD 2386.2 53.0

30 1 4TH 3650.7 47.5
5TH 4307.2 45.6

/o/

28 |+

24}

16 -

12+

-2+

-1{6 | ] ] | | | | | |
o 1000 2000 3000 4000 5000

FREQUENCY (H2)

FIGURE 4.14

MAGNITUDE OF TRANSFER RATIO Upy /Ug OF VOCAL TRACT
MODEL FOR /0/ INCLUDING YIELDING WALL BUT
NEGLECTING VISCOUS AND THERMAL LOSSES



MAGNITUDE Up/Ug (dB)

63.

40

36 -
321+
28 I-
24 |-
201
16}
12

FORMANT | FREQUENCY | BANDWIDTH

1ST
2ND
3RD

4TH
STH

232.0 60.7
596.5 57.2
2394.9 65.9

3849.7 42.5
3849.7 42.5

/u/

1000

2000 3000 4000 5000
FREQUENCY (Hz)

FIGURE 4.15

MAGNITUDE OF TRANSFER RATIO Um/Ug OF VOCAL TRACT
MODEL FOR /u/ INCLUDING YIELDING WALL AND VISCOUS
AND THERMAL LOSSES



MAGNITUDE Ump/Uq (dB)

40

64,

36} FORMANT | FREQUENCY | BANDWIDTH

1ST
2ND
28 - 3RD

24 |- 4TH
5TH

32

20

235.7
602.1
2401.0

3855.0
3855.0

5 ‘ '6
45.1
46.9

23.5
23.5

16
12~

/u/

-36 L '

o 1000

2000 3000

FREQUENCY (Hz)

FIGURE 4.16

1
4000 5000

MAGNITUDE OF TRANSFER RATIO Um/Ug OF VOCAL TRACT
MODEL FOR /u/ INCLUDING YIELDING WALL, BUT
NEGLECTING VISCOUS AND THERMAL LOSSES



65.

From these plots of the transfer ratio IUm/Ugl for
vocal-tract geometries corresponding to typical vowel sounds,
some important properties of the model can be observed. In
particular, the formant frequencies and bandwidths behave,
with respect to the types of losses included in the model,
as predicted by Flanagan's analysis.19 The effect of the
viscous and thermal boundary-layer losses is to slightly
decrease the formant frequencies and increase the formant
bandwidths, while the effect of the yielding duct wall is to
increase both the formant frequencies (slightly) and band-
widths. The viscous and thermal effects are more apparent
at high frequencies because the energy loss due to fluid
viscosity and thermal conductivity in the boundary layer is
proportional to the square root of the frequency; whereas
the effect of the nonrigid duct wall is more apparent at
low frequecies because the vibrating wall is a lossy, low-
frequency mechanical oscillator whose response is essentially
zero for frequencies above a few hundred Hertz. In fact, for
the values of the wall parameters given by Flanagan, it can
be seen that for low frequencies, the effects due to the
yielding duct wall dominate the effects due to the boundary-
layer losses. These effects can be seen clearly in Figs. 4.1-
L.3, which show IUm/UgI for a uniform acoustic tube terminated
in a short circuit.

The effect of terminating the duct with the radiation

load derived in Chapter III is to decrease the formant
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frequencies and increase the formant bandwidths. This effect
is greatest at high frequencies because the radiation load
is modeled by a resistance and inductance in parallel, and
thus behaves as a short circuit for DC and a resistance for
high frequencies. From Figs. 4.4-U4.6 it can be seen that at
high frequencies, the effects of the radiation load on the
ratio IUm/UgI dominate the effects of the boundary-layer
losses.

The important result of the frequency-domain analysis
is that the data obtained from this analysis, shown in Figs. 4.7-
4.16, compare favorably with characteristics of real speech.20
Moreover, the error introduced by neglecting the boundary-
layer losses, in the cases considered, is small enough to be
considered acceptable. This error is on the order of a
percent for the formant frequencies and ten percent for the
formant bandwidths, which compares favorably with the
difference limens of 3-5% for formant frequencies and 20-40%
for formant bandwidths.l9 It is therefore reasonable to
accept Egs. (2.18-2.21) as providing a satisfactory description

of the acoustical properties of the voecal tract.
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CHAPTER V

Discrete-Variable Formulation of the Vocal-Tract Transmission

Equations

The time-domain Egs. (2.18-2.21) governing acoustic
wave propagation in the vocal tract are a system of linear
(hyperbolic) partial-differential equations. These equations
are considerably more difficult to deal with than the
ordinary-differential equations in the frequency-domain
formulation of Chapter IV and raise issues that are outside
the realm of the usual (one-dimensional) sampled-data theory.

The problem of simulating the one-dimensional model
of the vocal tract in the time-domain has a two-dimensional
character: there is one time dimension and one space
dimension. If we use the same convention as in Chapter IV,
i.e., locate the glottis at x = -2 and the mouth at x = 0,
then the problem is to solve the partial-differential
equations for p(x,t) and U(x,t) on the semi-infinite strip of
the x - t plane, shown in Fig. 5.1. This requires that
boundary conditions be specified along the boundaries of
the strip. The condition on the line x = - is supplied by
the vocal-cord model, the condition on the line x = O is
supplied by the radiation load, and the condition on the line
segment t = 0, -4 < x { 0 is supplied by assuming initial
rest.

In order to realize a digital simulation of the

partial-differential equations, it is necessary to formulate
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the problem in terms of discrete variables and finite
differences. We construct a "net” of discrete points on the
semi-infinite strip in the x-t plane and seek the values
of the acoustic pressure and volume velocity at all points
on the net. The arrangement of the points on the net is
an important issue and one without parallel in one-dimensional
signal processing theory.

It is a well known result from the theory of partial-

12,13,2h that discontinuities or

differential equations
irregularities in the solution of equations of the hyperbolic
type tend to propagate along certain curves in the domain
called "characteristics". It is thus desirable, although not
necessary, to construct the net so that the net points lie

on the characteristics. The construction of such a "charac-
teristic net" is generally not an easy task since it may be
impossible to determine the characteristic curves in advance
of the determination of the solution itself.12’13 However,
we know certain properties of the vocal-tract transmission
equations which allow us to construct, a priori, a good

approximation to the characteristic net since these equations

are closely related to the simple wave equations of the form

of . 1 dg _
5% + S 3F = 0
(5.1)
d 1 df
3% te3T -0




70.

The characteristics of the simple wave equations (5.1) are
straight lines in the x-t plane with slope *1/c. We expect,
therefore, that a net whose points lie on these lines will

be a good approximation to the actual characteristic net

for the more complicated equations. It is clear that such

a net can be constructed as a rectangular mesh with uniform
spacing in both the x and t directions as shown in Fig. 5.2.
If Ax is the net spacing in the x direction and At is the net
spacing in the t direction then a uniformly spaced charac-

teristic net requires that
At = Ax/c. (5.2)

Relations between the spatial and temporal sampling
rates will appear again and arise from various considerations.
In this case, although a characteristic net is desirable
(in fact, nearly optimum), Eq. (5.2) is not in general a
requirement for a working simulation.

The vocal-tract transmission equations will now
be transformed to a set of partial-difference equations
relating the values of acoustic pressure and volume velocity
at only those points on the net. Formulntions of the partial-
difference equations may be classified as either explicit
or implicit formulations. Explicit formulations are those
for which it is possible to determine the solution to the
difference equations at a particular net point explicitly
from those net points at which the solution has already
been computed. TImplicit formulations are those formulations

which require the solution of a system of simultaneous
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equations in order to obtain the solution of the difference
equation at a set of net points. For example, in an

implicit formulation, the solution at all the net points on

a particular characteristic or at a particular time step
might be determined simultaneously as the solution to a set
of algebraic equations. The explicit formulations appear

to have the advantage of speed and simplicity. Indeed, most
previous vocal-tract simulations have used explicit formu-
lations. Explicit formulations of wave equations all suffer
from the restriction that the sampling intervals must satisfy

the constraint®
Ax > cAt. (5.3)

If this condition is violated, the simulation will be unstable,
in spite of the fact that the solution to the partial-
differential equations may itself be stable.29 Moreover,

many explicit formulations are unstable for any choice of
sampling intervals.12 Explicit formulations of the two-point
boundary-value problem also present certain difficulties in
simulating the boundary conditions. Implicit formulations,

on the othe; hand, can be found which are stable for any
choice of sampling intervals and which allow formulation of
the boundary conditions of the two-point boundary-value

problem in a natural way.

——
Although this requirement is derived by analysis, it can
be interpreted intuitively as a statement of causality.
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An implicit formulation is chosen here to simulate
the vocal-tract equations. This formulation has been used

30-36

successfully by researchers to simulate similar types
of equations and can be shown to be stable for any choice of
sampling intervals.35 The formulation is called a centered-
difference scheme, for reasons that will become apparent
shortly, and is a generalization of the trapezoid rule to
two dimensions obtained by using divided-central differences

and averages. The formulation of the finite-difference

equations proceeds according to the following rule:

d 1
3% ~ ax %%
(5.4)
2 L Ly
3t 7 At "x°t
where GV is the central difference operator and Mv is the
averaging operator in the v direction.12 Thus, we make the
substitutions:
=(n+l
df It"(n+2)At _ 1 rfn+l R R . ]
Ix x=(1+%)Ax 2Ax | Ti+l i i+l i
(5.5)
=(n+i
of lt"(n+2)At _ 1 (fn+l I T fn]
ot x=(i+})Ax 2At | Ti+l i+l i i

Equations (5.5) may be interpreted as simulating
the derivative of a function f, evaluated at the center of
each rectangle comprising the net, in terms of the values of

the function on the vertices of the rectangle. Specifically,
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the value of each derivative at the center of a rectangle is
obtained by differencing the function on the two sides of
the rectangle parallel to the direction of differentiation
and averaging in the other direction. Because of the
averaging, this formulation tends to suppress (high frequency)
roundoff noise as does the trapezoid rule in one dimension.37
In addition to having favorable noise character-
istics, this formulation has several other desirable attributes.
It has second order accuracy and is stable for any ratio of
sampling intervals Ax/At. When applied to a system of linear
constant-coefficient partial-differential (such as Eq. 5.1),
the formulation may be interpreted as a bilinear trang-
formation of the analog frequency space to the digital
frequency space producing a tangential warping of the
frequency axes (w and 5).* Moreover, in the special case
of a characteristic net, Ax = cAt, the simulation of Egs. (5.1)
is exact. That is, any solution to the finite-difference
equations is also a solution to the partial-differential
equations. This property of the formulation may be interpreted
as leaving the dispersion relation, w vs. B, invariant under
the frequency-warping transformation. In this case, the
only error in the simulation is the error which may be
introduced by the simulation of the boundary conditions.
Another important attribute of the formulation is

that certain important characteristics of the physical model

—
See Appendix A.
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are preserved in the simulation. Specifically, the partial-
differential equations which we wish to simulate are conserva-
tion laws: Eq. (2.18) requires that fluid momentum be con-
served and Eq. (2.19) requires that fluid mass be conserved.
In general, a set of finite-difference equations derived from
these partial-differential equations need not be conserva-
tion laws themselves. However, the formulation presented
here preserves this property of the model and the finite-
difference equations are, in fact, conservation laws.

Applying the transformations (5.4) to the partial-
differential equations (2.18) and 2.19) gives, after rearranging

terms, the system of (2N-2) linear equations in 2N unknowns :

n+l n+1 n+1 n+l
(ZU)341 * Pyyq + (ZU)57 - by
(5.6)
_ n _ . n n n
= (20)341 - Py + (BU)5 + Y
and
+1 n+1l n+1 n+1
Ui+ ()i - o (w))
n n
= =Ui + (W)7, + U7 + (vp)7 (5.7)
Ax n+l n n+1 n
- At [Ai+l " hip AL - Ai]
for

i = -N+l,.o-,"2,—l

n = 0,1’2,001
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where
Zn -, Ax [ 1 ]t=nAt
i o A Aoix,'t'i x=1iAx
and

_ Ax t=nAt
Y? = Kg AT LAo(x’t)]x=iAx ‘

The remaining two equations necessary to determine
a unique solution come, of course, from the boundary conditions
at the mouth and glottis, and will be discussed in the next
chapter.

At this point, we consider the problem of deter-
mining the value of the perturbed cross-sectional area, A?
appearing in Eq. (5.7). 1In Chapter II it was assumed that

A(x,t) could be approximated ac

A(x,t) = Aj(x,t) + So(x,t)g(x,t) (2.17)

where £ (x,t) satisfies
p(x,t) = Mw(x);;‘(x,t) + b (x)E(x,t) + K (x)E(x,t).  (2.18)

At any position x along the vocal tract, Eg. (2.18) is an
ordinary linear constant-coefficient differential equation.
Thus it is appropriate to define the (bilateral) Laplace

transforms
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B(x,8) =| p(x,t)e %%t

- (5.8)

E(x,8) =| &(x,t)e 5tat.

Laplace transforming both sides of Eq. (2.18) with respect

to t gives
B(xss) = M, (x)s"E(x,8) + b, (x)s (x,8) + K (x)E(x,8)

or,

sne) 1 (5.9)
p(x,s) Mw(x)s + bw(x)s + Kw(x)

Equation (5.9) may be interpreted as the system function of
a linear time-invariant system whose input is the acoustic
pressure p(x,t) and whose output is the normal wall dis-
placement £(x,t).

A discrete-time system analogous to Eq. (5.9) can
be synthesized using the technique of impulse invariance.15
According to this technique, a rational transfer function is

expanded in partial fractions which transform as

(5.10)
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and

Ry R, (At)"e z-

T - 5. AT DS AT (5.11)
(s-si) 1-2¢ ¥ 727t e 1 z”

We consider four distinct cases and apply impulse invariance
to each:

Case I:

M_ =0 (first-order system)

W
EGes) _ P () _ AP
D(x,8) (s-ag) p(x,2) l_eaoAtz-l

a, = ~K/Py
a_ At

S E(x,nAt) = [At/bw] p(x,nAt) + e © £(x,nAt-At)

Case II:

b2 - UMK <0, M 40 (underdamped

w WwW \
E(x,8) _ VM At [ 1 _ 1 J
ﬁ(x,s) (s-oo-on)(s-oo+on) Qjmon §=0,=JW, 8-0,+JW0

ooAt 1
LE(xz) | _at e ° sin(w At)z

i)“ (X’ Z) Cl)on l-geO'OAt

1 QOOAt

cos (w At)z™" + e 272
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_ 2
Oy = -bw/QMw W —/KW/MW - (bw/2Mw)

200At

O E(x,nAt) = [2e © coswoAt}ﬁ(x,nAt-At) - e € (x,nAt-2At)

+ E AL o0 sinwoAtJ p(x,nAt=-At)

Case III:

2
bo - UMK >0, M #0 (overdamped)

£(x,s) _ LM, _ At[ 1 J
B(x,s) (8-0,-a,) (8=0,%a,)  2aM, | s=0,-0,  s=0,ta,

o.At
2 e © sn‘.nh(ozoAt)z"l
~ T oM o_At 20_At
b(x,z) oW q1.20° cosh(abAt)z-l +e 9 2z

-2

_ 2
o- "ww % _\//(bw/éMw) - Kw/Mw

200At

coshaoAtJQ(x,nAt) -e £ (x,nAt-2At)

_A&— e © sinhabAtJ p(x,nAt-At)



79.

Case IV:

2 -
b - 4MWKW =0, M #0 (critically damped)

~ 2
p(x,s) (s-0,)

-~ o At _

S E(x,z) _ At2 e z~1
Ay M o At 20 At
p(x,2) W o12e ° 2 1 +e ° 2 2
Oy = -bw/’zMw
o At 20 _At

. E(x,nAt) = 2e 0 g(x,nAt-At) - e ©  £(x,nAt-2At)

o ooAt
+ [At /Mw] e p(nAt-At)

Case I, for which Mw = 0, is not realistic for
the vocal-tract wall, and will not be considered further.
For cases II, III, and IV, £ and p satisfy the second

order difference equation

€(x,nAt) = ¢ (x)p(x,nAt-At) + c;(x)€(x,nAt-At)

+ ¢, (x)E(nat-2at) (5.12)

at any position x. Therefore, at each point on the net

A = A% 4+ B g? (5.13)




and
where
n
A,
ol
Cvi
c

t=nAt
Ao(x’t) X=1Ax

cv(x) X=1AX

o At

g At

coAt
2e coswat

OoAt

2e coshwat

o At
2e ©

200At

e ° sinwat

0,1,2

Il

e © sinhg At if

if

if

if

if

n-2

MMwK
4MwK

UM K
W
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(5.14)
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and

o, = -bw/2Mw

o, =/KW/MW - (b, /2M )°

o, = / (b,/2M ) - K /M (5.15)

The impulse-invariant simulation of the yielding
duct wall was chosen for several reasons. First, the impulse-
invariance technique has the property that the frequency
axis is not distorted (warped) by the transformation. Also,
since the yilelding wall of the vocal tract is a highly damped
mechanical system, its frequency response falls off essentially
to zero as the Nyquist frequency appropriate for an audio
signal is approached. Therefore, the effects of aliasing
are negligible and the frequency response of the digital
simulation is identical with that of the mechanical system
when sampling frequencies appropriate for audio systems are
used. Another reason for using an impulse-invariant simu-
lation is of great practical signirficance, for it immeasurably
simplifies the entire simulation. According to Eq. (5.14),

ﬁ? does not depend on p?, therefore, 1t is not necessary to
solve Egs. (5.13) and (5.14) simultaneously with the partial-

difference equations (5.6) and (5.7). Instead, the value
n+l
i

appearing in Eq. (5.7), can be determined

of the wall displacement £ » and hence the perturbed cross-

n+l

sectional area Ai
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from only a knowledge of the past values of the acoustic
pressure and wall displacement.

Equations (5.6, 5.7, 5.13, and 5.14) are the finite-
difference analogs of the vocal-tract transmission Egs. (2.18-
2.21) and can be solved together with the boundary conditions
at the mouth and glottis to obtain the values of the acoustic
pressure and volume velocity at all points on the net. The
finite-difference analogs of these boundary conditions will
be discussed in Chapter VI and the-solution to the complete

system in Chapter VII.
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CHAPTER VI

Discrete-Time Formulation of the Boundary Conditions

6.1 The Radiation Load
In Chapter iII an expression for the radiation
impedance at the mouth or nostrils was derived. Based on
this expression, an integral equation relating the acoustic
pressure and volume velocity at the mouth or nostrils was

inferred. This equation is

t

U(t) = 3-2-0- [Lrid [m p(a)da + %ﬁi—] (3.14)
where
R,nq = 128/91°
Lo.g = 8a/3mc
A = Ta

In the first portion of this chapter, several
digital simulations of Eq. (3.14), based on various integration
rules, will be considered. It is shown in Appendix A that
numerical integration of a linear constant=coefficient
differential (or integral) equation corresponds to a mapping
of the s plane to the z plane. We will thus investigate

the effects on the radiation impedance (3.12) resulting from
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various integration rules applied to Eq. (3.14) when the
cross-sectional area is held fixed.

Consider first the simulation of Eq. (3.14) using
an ideal integrator. The (simulated) radiation impedance
is therefore simply that given by Eq. (3.12). The normalized

acoustic impedance given by

. . Po°
2,(30) = 2, (30)/2,5 2, = 5~

J® Lrad

1+Jw Lrad/Rrad

(6.1)

depends only on the ratio of the piston circumference (2wa)

to the wavelength (A=2mc/w), and not on the cross-sectional
area itself. Beeause Z, depends only on this single parameter,
2ra/N = wa/c, we will compare the normalized acoustic
impedances, 2, for the different simulations rather than
their analogous impedances ZA' Figure 6.1 shows plots of the
real and imaginary parts of the normalized acoustic radiation
impedances corresponding to digital simulations of Eq. (3.14)
according to various numerical integration rules when the
cross-sectional area is held fixed. For purpose of comparism,
a sampling rate of 1/At = 20 kHz and a piston circumference of
2ma = 10cAt has been assumed. This latter choice, for the

piston circumference, is both an approximate upper limit for
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the human mouth and also allows the abscissas in Fig. 6.1
to be interpreted both as frequency in kilohertz and as the
ratio of the piston circumference to wavelength.

The system functions used to compute these plots
were easily obtained from the radiation impedance, Eq. (6.1)
by letting s = jw and using the mappings derived in Appendix A.
The first integration rule considered is the midpoint rule,

which corresponds to the mapping

1 1
S=m<z—z> .A

Referring to Fig. 6.1, it is clear that the midpoint rule
does not give an adequate simulation of the radiation load
except, perhaps, at very low frequencies. An important
observation to be made from this plot is that the character
of the error introduced by using the midpoint rule is such
that the radiation resistance, and hence the loss, decreases
erroneously at high frequencies thus amplifying the effects
of high-frequency roundoff noise.

The next integration scheme considered is the
trapezoid rule. This technique corresponds the mapping

o .2 21
T~ At z+1L

which is recognized as the bilinear transformation. The
properties of this transformation are well known and it is
commonly used in the design of recursive digital filters.

In particular, it has the property of mapping the entire
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analog frequency axis (-»,o) in the s plane onto the unit
circle |z| = 1 in the z plane by a tangential warping function.
Thus, the digital frequency Q = m corresponds to the analog
frequency w = 4o, ) = -t corresponds to w = -», and the

frequency scale is warped according to the rule

w = f% tan <g9 .

Since the real part, the imaginary part, the magnitude, and
the phase of the radiation impedance all monotonically approach
constant values, the trapezoid rule appears well suited for
simulating the radiation load.

Both the midpoint rule and the trapezoid rule are
based on piecewise linear approximations to the integrand.
It might be expected that better results can be obtained
using a higher-order approximation to the integrand. Thus,
we are led to investigate a simulation based on Simpson's
(parabolic) rule. Simpson's rule can be shown to be equivalent

to the mapping

3 z2-l

5 = & ——
At 2z

Referring again to Fig. 6.1, it is seen that although Simpson's
rule is a better approximation to an ideal integrator than
either the midpoint rule or the trapezoid rule for frequencies
less than about 7.5 kHz, the larger error introduced as the
frequency approaches 10 kHz makes Simpson's rule undesirable

for use in a simulation of the radiation load. As with the
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midpoint rule, Simpson's rule also results in an erroneous
decrease in the radiation resistance at high frequencies.

Based on the preceding analysis and the fact that
the trapezoid rule tends to suppress high-frequency noise
(whereas other common integration rules tend to amplify it),37
the trapezoid rule was chosen for the digital simulaticn of
the radiation load. The difference equation for this

simulation is the following:

L rad Un rad At n
;r——' p
rad 1? ©
n-1
an
rad rad n-1
= p,C Qfﬁ‘;> ( P (6.2)
° o“7o0 Rrad ©

where

() = ()=t

x=1Ax
R = 128/’97r2
rad
Lo = 8a,/3mc
A = Ta~.

6.2 The Glottis

The vocal cords, together with the subglottal
system, constitute the energy source for the vocal tract
and thus provide the require boundary condition at x = -2
necessary to complete the mddel of the vocal tract. In

recent years, there has been considerable effort in modeling
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r-11 The model chosen for this simulation is

this system.
the latest version of the Flanagan, Dudgeon, and Ishizaka
Two-Mass Model. This model is discussed in detail in a

11 and is formulated

recent paper by Flanagan and Ishizaka
as the analogous electrical network shown in Fig. 6.2. The

values of the equivalent circuit elements in the model are

given by
R, = 0.19 po/Agl
A g A
2 2
o 05 - 42 (1 - )]
Ryo = 22
g2
2
ME d
_ i
R,y = _A%_- (6.3)
gi
1 = 1’2
L podi
gl 72;;‘
where &g’ dl’ and d2 are the physical parameters shown in

Fig. 6.3. Aq (Flanagan's notation) is the cross-sectional

area at the input (x = -2) to the vocal tract. A . and A

gl ge

are the repective cross~-sectional area specified by the
displacements of the masses my and m,. These displacements
are determined by solving the set of mechanical forcing

relations for the oscillations of the two masses.8’9’ll
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Computationally, this model may be separated into
two distinct steps. As the first step, the mechanical
forcing relations are solved, using the curren:t state of
the model to compute new values of the analogous circuit
elements for the next iteration. The equations used in this
step are identical to those given by Ishizaka and Flanagan.ll
As the second step of the computation, the equations for the
analogous glottal network are solved to obtain the acoustic
volume velocity Ug and pressure pg at the "input" to the
vocal tract. For this step, the equations given by Ishizaka
and Flanagan must be modified slightly, because they model the
vocal tract as a concatenation of T sections as shown in
Fig. 6.4.

In the following chapter, it will be shown that
from the vocal-tract transmission Egs. (5.6) and (5.7), a

linear constraint on Ug and pg can be derived

pg = thUg + pvt

where the parameters th and P, MaYy be interpreted as an
equivalent (time-varying) resistance and pressure, respectively,
for the vocal tract. Thus, Ug is determined by solving the
loop equation for the circuit shown in Fig. 6.5 rather than
the one in Fig. 6.4. The differential equation for this
circuit is
du
(Rk1+Rk2)|Ug|Ug + (va+Rv2)Ug + (Lgl+Lg2) —fﬁd
(6.4)

+ thUg + Pyt - PS =0



93.

10Vl TVIO0A 340 90TVNV ¥3L3INWVHVd Q34NN
NOILO3S -1 ONIANING NHOML3N TVLLOTO LN3IIVAINDI

v'9 3MN9id
HLNOW | 1ov¥L1 VO0A SQN¥0D TYO0A SONNT
L/ R ———}
]
T 3 3 o -
- |uy - ._mooz_n.
wysS g Uy L by = ®n = QuOD =% 1 %
._..u I up T [ v-un n T 6n TV0A .ﬂ
M\ . 113t Lagy)ity
n t
| 2hyBni2ny WAy Bn |ty
| ¢




=
(O))

CvoD ONILVINOTVI HOd X¥OML3N ,dO0T V1109, LN3TVAINDI

S'9 3MN9I4
W31SAS TVL1079¥3dNS ¢ SQs00 TVOOA | SONMT
7 1
'y 04 J\ B
1300W 300N
1 0rAde] joval jeu-n;  (9-18n-=l auod [=Sd !
T . 7]
+ 3.%46.._ _.'.::Z
(1) 1Ay . l l
(3)°n
| 2hgiBnl2ny  WAyiPaiy |




and the finite-difference simulation is

1l g2 .. n n-1
£1+Ro) IU“nIUn + (Ryp 4Ry 2)Ug o 8s (Ug-Ug )

(R

+ RgtUg + pgt - Pg =0
This finite-difference formulation was chosen so that the
modification required to adapt Ishizaka's model as a boundary
condition for Egs. (5.6) and (5.7) was minimized. Therefore,
the formulation of Eq. (6.5) is consistent with the formulation
used by Flanagan and Landgraf8 and Ishizaka and Flanaganll
based on replacing derivatives with backward differences.
It is important to note that the glottal loop

(6.5) is nonlinear and must be solved simultaneously with
partial-difference equations for the vocal tract, because
the equivalent resistance th and pressure b,y are not

known a priori. Exactly how this is accomplished will

be discussed in the following chapter.
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CHAPTER VII

Implementation of the Finite-Difference Equations

In the foregoing chapters, a set of finite-difference
equations has been formulated which models acoustic wave
propagation in the vocal tract and accounts for the effects
of radiation at the 1lips and a self-oscillating source at
the glottis. We now proceed to write down these equations
in a systematic manner and give a procedure for solving
the entire system.

Referring to the net shown in Fig. 7.1, assume that
p and U are known at all net points for which n is less
than some integer n, and p and U are both zero for n < 0O
(initial rest). We will now determine p and U at all points
along the row n = ng.

From the forcing relations given by Ishizaka and
Flanagan11 the values of the elements in the analogous network
for the glottis, at time n = n,, can be determined from the
past values of the volume velocity, Ug’ through the glottis
and the past state of the model. The perturbation to the
cross-sectional area of the vocal tract, BA = Soﬁ, at each
net point in the row n = n_ can be determined from Eq. (5.14):

n-1

n _ n-1
€ 1iei

1 = %oiPi noe (5.14)

e 0181

+ cC

where the c,; are given by Egs. (5.15).
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The system of linear algebraic equations to be
solved for the values of U and p each of the net points on
the row n = n, can now be written down systematically as
follows. Starting at x = O we use Eq. (6.2) to write the

boundary condition at the 1lips:

n ..n n.n _ n-l.n-1 n-1n-1 .n-1

by1Us T hipPg = 817705 7t gyp Py T = by (7.1)
where
n
L

n rad n n

h =p.cC (————> g = h

11 o) AO o 'll 11

n n

R (Lrad + g) Lo (Lrad _ At
12 Rrad 2 o 12 Rrad 2 o

We next write down the (2N-2) partial-difference equations

(5.6-5.7):

n..n n n n n
2;0 ¥ by + 25 905 1 - P54
_ on=1..n-1 n-1 n-1..n-1 n-1
=2; Uy T -py Tt Zy QU5 v Py ]
and (7.2)
n nn n n n
Uy +Ypy - U5 1 T Y5.9P5 9
_ n-1 n-1_n-1 n-1 n-1 n-
=-U; 7+ Yy Tpy T AUy 7+ Yy Py
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for
i=0,-1,...,-N+2

where the A} are determined from Eqs. (5.13-5.1L). The
boundary condition at the glottis (i = -N+1) is the n;nlinear
loop equation (6.5) derived from Ishizaka's equivalent
circuit for the glottis, which can be rewritten in the

form

ny Ny N n,.n n n n n .n.n-1 _
Rk|Ug|Ug + [RV+Lg/At+RVt]Ug + [pvt-PS—LgUg /At] =0 (7.4)

where

n _ mn
Ug - U‘-N+l

Re = Rq * Byo

L =L. +L
g gl g2

and Rgt and pgt are the equivalent resistance and pressure
looking into the vocal tract from the glottis at time t = nAt.
th and pvt are notknown a priori, but should depend only on
the present state of the vocal tract. In fact, it will be

shown shortly that th and P,y can determined from the first
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the equations governing the superglottal system.
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equations (7.1-7.3) which have been written down, i.e.,
For the

present, however, we will assume a general linear condition

at the glottis of the form

n n n n _.n
b v oN, onP-N+1 = Pon

oN,oN-1V-N+1 TP

(7.5)

and proceed with the formulation as if the coefficients of

Eq. (7.5) were known.

Equations (7.1-7.5) can be written compactly in

matrix form as

a(n)p(n) _ 4(n)
where
[ n .n
hll h12
n n
o 1 Z_l -1
n n
1 Yo -1 Y_l
n n
Z-l 1 Z_2 -1
g(n)_

n n
Znie b Zn
n n
1 T e 7t YN+
i o, on-1 Pon, oN |
(n) o .n .M n n T
8= MU P Uy, e vs Uiy sP g ]

and Q(n) is given by

b(n) - g(n“l)g(n‘l) + Q[é(n) _ é(n'l)]

(7.5)

(7.7)
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where
- _
€11 812
n n
zo -1 2z, 1
n n
-1oYo 1 Y
n n
- Z2, -1 2., 1
n
G = n n
= ST ST N S
n n
e 1 Zyn 1
n n
L Yy 1 ToN+1
n
i &on, oN-1 €oN, 2N |
(n)  mn ,n ,n n T
AV = [AS,AT AT, A ]

and D is the (2NxN) matrix D = &% [4; ;] with elements

- {1 1=Pk+1; j=k,k+1; k=1,2,...,N-1

C. .
+d O otherwise

Equation (7.6), together with the nonlinear glottal-
loop equation (7.4) can be solved effiriently using the
algorithm described in Appendix B. This algorithm provides

a method for solving the system of equations

HE =D (7.8)
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where H is a sparse matrix of the form given in Eq. (7.6).
The solution is obtained by decomposing the (2Nx2N) matrix
H as the productofa lower triangular matrix L and an upper
triangular matrix U. The matrices L and U are themselves
sparse, with their only nonzero elements in triangular

blocks along their main diagonals, and are of the form:

1 7]
tyy 1
by b 1
tys 1
L= &53 &54 1
ton-1,2n-3 Yon-1,on-2 1
i tow,on-1 1
[U17 Upp
Yoo Vo3 Yoy
5 Y33 Y31
- Uyl Yus Y
Y55 56

UoN-1,2N-1 YoN-1,2N
UoN, 2N

*
Not to be confused with the volume velocity U(x,t).
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Once this decomposition is known, if we let

N =U¢ (7.9)
then
H = (L UL =D (7.10)
becomes
I =2b (7.11)

Since L is lower triangular, Eg. (7.11) is solved trivially
for M; and since U is upper triangular, once T has been
found, Eq. (7.9) is solved trivially for (.

The problem is, of course, that the (nonezero)
elements in the last row of H and the last component of b
are not known, since they define a linear boundary condition
at the glottis. It will now be shown how to use the nonlinear
condition given by Eq. (7.4) in lieu of such a lirear
condition. According to the algorithm of Appendix B, the
elements of L, U, and T are computed "row-wise" so that
any element in a particular row depends only on elements
in the corresponding row of H, and previously computed
elements of L, U, and 7. Thus, the only elements of L,
U, and T which depend on the last row of H and the last
component of b are those in the last rows of L and U

(viz., &QN,ENébuQN,QN) and the last component of T (viz., nQN)'
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These elements appear only in the two equations

L b

2N,2N—1n2N = Pon

and

oy, onben = Mo
Once f (CQN =P 4 = pg) is determined, the remaining

components of the solution vector { can be found according

to the algorithm of Appendix B.
The (2N-1) th equation in the system

uf =1 (7.9)
is

+ u

uEN-l,2N—1C2N-1 2N—1,2NC2N = oy 1 (7.12)

where u2N—l,2N—1’ u2N—l,2N’ and n2N—l are determined from

the algorithm of Appendix B. If u2N—1,2N # 0, define

(n) _
Pyt’ = Mon-1/YN-1, 20 (7.13)

and

(n) _
R - “UpN_1,2N-1/"2N-1, 2N (7.14)

so that Eq. (7.12) becomes
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Loy = Riﬁ)ggN_l + Péﬁ) (7.15)
Finally, substituting
Con-1 = Ug
Loy = pg
gives
o = Ryt )0 + p{Y) (7.16)

Equation (7.16) defines an equivalent linear circuit for

the vocal tract as seen by the glottis at time t = nAt. The
equivalent pressure source is pé?) and represents the stored
energy in the vocal tract. The equivalent resistance is
ng) and depends only on the vocal-tract geometry (Note, if
u2N-1,2N = O then the equivalent circuit for the vocal tract
is simply the current source Ug = n2N—l/u2N,2N)'

The equivalent network defined by Eq. (7.16) is
combined with Ishizaka's equivalent network for the glottis
to give the network shown in Fig. 6.5. The nonlinear loop
equation (7.4) can then be solved for Ug; and p, can be
determined from Eq. (7.16). The remaining elements of the

solution vector can then be determined according to the

algorithm of Appendix B.
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The entire procedure is repeated for succeeding
time samples to determine recursively the state of the system
for any n > 0. Notice that the matrices H and G depend onl
on the geometry of the vocal tract. If the geometry of the
vocal tract at a particular time t = nAt remains unchanged
from its configuration at time t = (n-1)At then the matrices
H, L, U, and G also remain unchanged and it is therefore not
necessary to recompute them for that time step (this property
is especially useful when simulating the nasal tract, which
is time invariant).

Thus far, only the implementation of the vocal-
tract proper has been considered. We now describe an
implementation for the nasal tract. The complete system
(including the nasal tract) is modeled as three acoustic
tubes joined in a "Y" configuration as shown in Fig. 7.2.
The boundary conditions at the 1lips and glottis remain
unchanged; and the boundary condition at the nostrils is
again the radiation load as simulated by Egq. (7.1). The
boundary condition at the junction of the three acoustic
tubes follows directly from the physics of the situation
viz., the pressure across the junction must be continuous
and the net flow of mass into the junction must be zero.

These conditions imply

Ppr = Por = Pua (7.17)
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and

Upy = Uor * Uya (7.18)

where the above quantities are measured at the Jjunction of
the pharyngal, oral, and nasal cavities as indicated in
Fig. 7.2.

The solution to the system of three acoustic tubesg
follows in a similar manner to the previous case of a single
tube. At each time step t = nAt, two systems of equations,
one for the oral cavity and the other for the nasal tract,
are formulated as in Eq. (7.6). Again, for both of these
systems the boundary condition at the left-hand ends of the
tubes (in this case, the junction) are not known a priori.
The decomposition algorithm is applied to both systems
and equivalent circuits are determined as before. These
circuits model the oral and nasal cavities as seen looking
from the bifrication towards the mouth and nose; and together
with the constraints at the junction provided by Eqs. (7.17-
7.18) can be readily solved to yield a single equation of

the form

h + h

11%pu T ByoPpg = Py (7.19)

Equation (7.19) is now used as the boundary condition at
the right-hand end of the pharynx. With Eq. (7.19) as the

first equation, the system of equations for the pharynx
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can be formulated and solved as in the previous case of

a single acoustic tube with Ishizaka's equivalent circuit
for the glottis used as the left-hand boundary condition.
Once the solution to system of equations for the pharynx
has been obtained, the equivalent circuits fof the oral and
nasal cavities together with Egs. (7.17-7.18) can be used to
determine pOR’UbR’ Pya> and UNA‘ Finally, using these four
quantities, the solution vectors for the oral and nasal
cavities can be obtained in the same manner as the solution
to the single-~tube problem was obtained after the glottal-
loop equation was solved.

The entire procedure is then repeated for succeeding
time samples to determine recursively the state of the system
for any n > 0. The same comment, concerning the necessity
to recompute the factors of the coefficient matrices only
when the geometry changes, still applies. However, notice
that changing the geometry of the oral cavity changes the
coefficient matrices for both the oral cavity and the pharynx
but not for the nasal tract; whereas changing the geometry
of the pharynx changes only the coefficient matrix for the
pharynx. Also, changing the cross-sectional area of the
nasal cavity at the junction does not require recomputing
all of the elements in the matrix factors of the coefficient

matrix for the nasal tract, but merely the last few elements

of the factors.
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CHAPTER VIIT

Experimental Results and Concluding Remarks

8.1 The Computer Simulation

The system of difference equations formulated in
Chapter VII was programmed in Fortran on a medium-size
general-purpose computer. Specifically, the machine used
here was one of the Honeywell DDP-516 computers in the
Acoustics Research Department of the Bell Telephone Laboratories,
Murray Hill, New Jersey.

Two series of experiments were performed to
investigate the operation of the simulation. For the first
series, the vocal-cord model was again replaced with an ideal
(i.e., infinite impedance) volume-velocity source (as in
Chapter IV). In this case, however, the source supplied a
unit sample rather than a sinusoid, and the output of the
simulation was taken as the acoustic pressure rather than
the acoustic volume velocity. Thus, the unit-sample response
of the model is obtained directly and the frequency response
is obtained by taking a "large enough" discrete Fourier trans-
form (DFT) of the unit-sample response.

The result of one such experiment is given in Fig. 8.1
which shows the unit-sample response and its DFT for a vocal-
tract configuration 17.5 cm in length with a uniform cross
section of 5 cm®. In this case At = 1/20 msec and Ax = 1.75 cm,

which satisfy the condition Ax = cAt. The wall parameters
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(a) UNIT-SAMPLE RESPONSE

+1Pmtt) (NORMALIZED)

12.8 msec

TIME (MILLISECONDS)——

(b) FREQUENCY RESPONSE

jewtat
1 2 3 4 SkHz
o } t + { i
k FREQUENCY (KILOHERTZ) —
-60dB

FIGURE 8.1

MOUTH SOUND PRESSURE AND ITS DFT FOR VOCAL-TRACT
SIMULATION WITH UNIFORM CROSS SECTION (A=5cm<) DRIVEN

BY IDEAL VOLUME-VELOCITY SOURCE
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are again those given by Flanagan.l9 The frequency response
was obtained using a 1024 point (51.2 msec) DFT with a
Hamming win' ,w. When comparing Fig. 8.1(b)with the analogous
result obtained in the frequency domain, shown in Fig. 3.5,
there are two points that must be kept in mind. First,

Fig. 8.1(b) corresponds to the ratio IPm/Ugl rather than

the ratio lUm/UgI. These two ratios are, of course, related
by the radiation impedance at the lips. Second, Fig. 8.1(b)
was obtained by taking the DFT of the unit-~sample response
of the discrete-variable simulation and is therefore an
aliased version of the spectrum of the continuous wvariable
model defined by the partial differential equation of
Chapter II.

For the second series of experiments, the vocal-
tract model was driven by the two-mass model of the vocal
cords as described in Chapter VII and the simulation was run
to obtained synthetic speech sounds. The data used to obtain
the results discussed here were the same as those used in
Chapter IV, viz., the area data obtained from Fantgo for
the Russian vowels /a/,/e/,/i/,/0/,/u/, quantized to the
nearest +/2 , and the wall parameters given by Flanagan.19
The additional parameters required for the vocal-cord
oscillator were those used by Ishizaka and Flanagan.ll

Figures 8.2 through 8.7 show data obtained from
the simulation of the five Russian vowels. Figures 8.2

through 8.6 each consist of four plots: plot (a) shows the

acoustic pressure output at the lips when the vocal-tract
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model is excited by a unit sample from an ideal volume-
velocity source at the glottis; plot (b) shows the log
magnitude of the frequency response of vocal tract obtained
by multiplying the unit-sample response (a) by a 51.2 msec
Hamming window and computing its DFT; plots (c¢) and (d) show
respectively the volume velocity Ug(t) measured at the
glottis and the acoustic pressurejpm(t) measured at the
lips for the complete simulation, driven by the two-mass
model. Finally, Fig. 8.7 shows wide-band spectrograms of
.3 sec segments of four of the five vowels synthesized.

For each of the above simulations the sampling
intervals were chosen as At = 1/20 msec and Ax = 1.75 cm

so that the condition
Ax = cAt (8.1)

is satisfied. It was found that although the simulation was
stable for any choice of sampling intervals (as predicted),
the ability of the finite-difference equations tc accurately
simulate the partial-differential equations of Chapter II
declined as the ratio Ax/At deviated from c. Though a
decrease in the accuracy of the simulation might be expected
if a sampling rate is decreased, this is a somewhat unusual
situation since the accuracy can also decrease if a sampling
rate is increased. Such behavior was predicted in Chapter V,
where it was argued that Eq. (8.1) implies a nearly charac-
teristic net and thus should result in a nearly optimum

simulation. By choosing various sampling rates, so as to

violate Eq. (8.1), this contention was experimentally verified.
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8.2 Summary and Conclusions

It was the principal objective of this thesis to
carefully formulate a digital simulation of the human vocal
apraratus under a reasonable set of assumptions, valid for
a class of speech-like sounds. In formulating this simulation,
ideas and insights gained from the fields of digital signal
processing and numerical analysis often proved valuable and
provided novel approaches to some of the modeling problems.
The utility of these techniques transcends the particular
simulation treated here, and they deserve wider application.

The partial differential equations derived in
Chapter II appear to describe adequately, sound propagation
in the human vocal tract under the set of assumptions given
in that chapter. 1In particular, the assumptions are valid
for a class of speech-like sounds which include the vowels.
However, they are not valid for the case of turbulent noise
generated by high velocity flow through a constriction.

Thus the model will not automatically generate fricative
sounds without additional modifications.

Another important aspect of the simulation is that
it 1s time varying. Although this is the correct treatment
of the problem, it may be desirable, in a practical speech
synthesis system, to increase computational efficiency by
treating the problem as quasi static. If the dynamic
equations are used in such a situation, it is expected that

a rapid time change of the cross-sectional area function
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A (x,t) will generate an (unwanted) acoustic pulse. If, on
the other hand, the term bAO/Bt is eliminated from the dynamic
equations, a discontinuity in the solution may still occur
if the area changes rapidly because the solution before the
change, which serves as the initial conditions for the
equations after the change, no longer satisfies the new
equations. Thus, if a quasi-static simulation be desired,
the changes of the area function must be made with considerable
care (e.g., immediately preceding a glottal pulse).

The centered-difference scheme, chosen here to
formulate the finite difference simulation, is stable for
any choice of sampling intervals, preserves the conservation-
law character of partial-differential equations, has high
(second order) accuracy, and yields an exact simulation under
certain circumstances (see Appendix A). It was argued and
then confirmed experimentally that an optimal simulation of
the partial differential equations could be obtained when
the condition Ax = cAt is satisfied. Since the simulation is
stable for any choice of Ax and At, and since practical
considerations make it desirable to choose Ax < cAt (the
range in which explicit simulations are unstable), it might
be interesting to investigate the perceptual effects of
synthetic speech generated by a suboptimal simulation.
8.3 Additional Areas for Further Study

Several issues, relevant to the implementation of
a speech synthesis system, have not been resolved in this

thesis. As mentioned previously, the problem of turbulent
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noise generation must be considered. Also, the case of a
complete closure, occurring other than at the lips, where

the cross-sectional area vanishes must be treated specially.
Probably the most natural treatment of this case is to
consider the closure as a boundary between two acoustic tubes
at which the volume velocity vanishes.

The values of the parameters used here for the
model of the yielding wall are at best crude estimates.
Further study is necessary to determine the values of these
parameters and their spatial variation more accurately.

An improvement on the Webster horn equation has
been suggested by E. S. Weibel.38 Weibel formulated a one-
dimensional equation of the same form as the Webster equation,
but with different coefficients. He obtained this equation
for a lossfree hard-walled horn by exploiting a curvalinear
coordinate system determined by the cophasic wavefronts for
a given horn geometry. Although this approach was considered
impractical for the pruposes of this thesis because it requires
the solution of the multidimensional Laplace equation each
time the horn geometry is changed, a similar approach might
be investigated for a vocal-tract model, should applications
arise requiring improved accuracy.

It was mentioned previously that choosing Ax = cAt
is highly desirable. However, in order to obtain a

"sufficiently fine'" spatial sampling of the area function,
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this condition often requires high temporal sampling
frequencies. If it is assumed that the desired speech output
has a low-pass character then it seems reasonable that
sufficiently sharp changes in the area function, due to high
spatial frequencies, should not be resolved by an acoustic
wave with a low-pass character. Thus it may be possible to
reduce the spatial sampling rate if the area function is in
some way '"smoothed" before it is sampled.

Finally, there is currently a growing interest in
multidimensional signal processing and filter design. Once
this field has been more thoroughly explored, it might be
profitable to view the vocal tract as a two dimensional
(one space and one time) linear time-varying filter, or as a
three dimensional (one space and two time) linear time-

invariant filter.
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APPENDIX A

Numerical Integration and Differentiation: A Digital-
Signal-Processing Approach.

One of the key results of this thesis is a
demonstration of the efficacy of applying digitai-signal-
processing concepts and techniques to the simulation of
a physical system. This approach is not only useful for
formulating the simulation, but also for predicting and
characterizing the error introduced by the simulation;
and finally, for evaluating the simulation. With this
in mind, it will be shown that a simulation of a linear
time-invariant (or quasi time-invariant system obtained
by replacing derivatives (or integrals) with finite-
difference analogs can be characterized by a mapping of
the s plane to the z plane. Moreover, this mapping is
given by the transfer function of the digital network
used to simulate the derivatives (or equivalently, the
reciprocal of the transfer function of the digital net-
work used to simulate the integrals). Several common
numerical differentiation and integration techniques will
be investigated and an extension of this approach, to a
second-order system of linear partial-differential equa-

tions, will be illustrated.

Let H(s) be the transfer function of a linear
time-invariant system with input u(t) and output y(t)

satisfying the differential equation
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N K u ba(t)
Tk L %t g '

k_:o L=O

For simplicity, assume N > M and rewrite Eq. (A.l) as
N K N-1 '
y ay(t) _ b, du(t) 5
L%k Tk T e (8.2)
k=0 L=0

where bb = 0 for any £ > M. This equation can now be

written in state-space form as

X = Ax + Bu
(.3)
y = cx

where the components of the state vector X are given by

i-1
x, () = & y(t) 5 _ 1,5, (A.L)

dti-l

and the matrices A,B, and C are given by

0 1 0 0 0 ]
0 0 1 0 0
A= . L4
0 0 0 0 1
-fg __a_'_]_: _fg e 0o 0 - aN-E naN-l
A &N oy N i
T
B= [0 o ... o X
(A.5)
€= by by oo Dby 4]
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(T signifies matrix transpose).
Using the representation of Egs. (A.3) the trans-

fer function H(s) may be written conveniently as

H(s) = Y(s)/U(s)

clsI-A]7'B (A.6)

The state-space formulation is particularly
convenient for our analysis for two reasons. First, in
the time domain, there is only a single vector derivative
operator in a conceptually simple network structure,
rather than a complicated network of scalar derivative
operators imbedded in an unspecified network structure.
Second, in the frequency domain, the complex-frequency
parameter s appears in a simple context in the expression
for the transfer function H(s). By replacing each differ-
entiator (or integrator) in H(s) by a finite-difference
analog it will be shown that the transfer function E(Z) for

the new (digital) system is given as

H(z) = Cl¥(z)I-4)'B

H{v(z)]

where ¢(z) is a transfer function associated with the

finite-difference analog.

Consider the general finite-difference analog

for the derivative whereby

(A.7)

(0]
Il
32
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*
is replaced by the difference equation

b.g =D f (A.8)

where O, and 0é are finite-difference operators. If F(z)
and @(z) are the z transforms of f and é, then define

D,(z) and D2(z) so that Eq. (A.8) implies
De(z)a(z) = Dl(z)ﬁ(z). (A.9)

From Eq. (A.9) a transfer function for the "digital

differentiator" may be defined by

D(z) = &(z)/¥(z)
= Dl(z)/Dg(z) (A.10)
Since D,(z) and DQ(Z) are polynomials in z and z"l, D(z)

is a rational function of z.
If the finite-difference analog defined by
Eq. (A.8) is now applied to the state Egs. (A.3), the

result is the state equations for the digital simulation:

DX = 0, A% + BBl

Il

CX (A.11)

¥

*
The tilde is used here to designate sequences so that
F(n) = £(nat).
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Since A,B and C are constants, the transfer function for

the simulation is therefore

f(z) = ¥(z)/0U(z2)

Il

I

cin(z)1-a17"8 (A.12)

which 1s recognized as H(s) by Eq. (A.6) with the transform-

tion
s = D(z) (A.13)

Thus, it has been shown that if a system H(s) is
simulated by replacing each (analog) differentiator by
a digital differentiator with transfer functions D(z), the
resulting transfer function for the digital simulation is

simply
H(z) = H[D(z)]

By a similar analysis, it can be shown that if a
digital simulation is obtained by integrating Eq. (A.1), or
equivalently Eq. (A.3), according to a numerical-~integration

formula for which

t

f(t) =t[ g(a)da + £(t,) (A.1h)

o

implies
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J(z) = ¥(z)/G(z), (A.15)

then the transfer function of the resulting digital system

is determined by the mapping

= J(z) (A.l6)

nlH

so that
H(z) = H[1/J(z)] (£.17)

The mapping functions for several common numerical
differentiation and integration formulas are given in
Table A-I. An interesting observation to be made from this
table is that the four finite - difference analogs for the
derivative are equivalent, respectively, to the first four
numerical integration rules. Thus, for example, if it tis
desired to formulate a simulation by integrating a
differential equation according to the trapezoid rule, it
may be more convenient to implement the simulation using
central differences with averaging. Furthermore, many
important properties of the simulation can be predicted
immediately from the properties of the particular mapping
function used to generate the simulation.

Of particular interest is the region in the
z plane which is the image of Re(s) < 0. For if this region

is not wholly contained within the unit disk |z| < 1, there
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will be stable continuous-variable systems which are mapped
to unstable discrete-variable systems. Moreover, it is
generally desirable that the jwo axis (Re(s) = 0) map to the
unit circle |z| = 1 so that digital frequency corresponds
to analog frequency. As an example, consider again the
example given in Chapter I of an acoustic tube simulated
with "T sections" and backward differences. The excessive
damping can be understood immediately by observing that

the mapping corresponding to backward differences maps
Re(s) < O onto |z-%] < % and the jw axis to |z-3| = 3. If
forward differences were used rather than backward differ-
ences, it would be found that the region Re(s) < O maps
onto Re(z) < 1 and the j» axis maps to Re(z) = 1 so that
the simulation, in general, would be unstable.

It will now be shown that a generalization of
this analysis can be applied to the simulation of a system
governed by a set of linear constant-coefficient partial-
differential equations. Consider the case of a lossy
acoustic tube or transmission line described by the set of

equations
op _ . oU
- =L R

-V -4 (A.18)
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The solution to these equations is a summation

(or integral) over modes of the form

p(x,t) D(7,8)

I X+st
U(x,t) [ = | O(rs) | € (a.19)

If Eq. (A.19) is substituted into Egs. (A.18), the equation

¥ Is + R]|P 0

s (4.20)

)

results. Equation (A.20) has a nontrivial solution if and
only if the determinant of the coefficient matrix vanishes,

or equivalently, ir and only if

> = (Ls+R) (Cs+G) (A.21)

Equation (A.21) is the dispersion relation for the system

and characterizes the nature of the wave propagation in the
system. If y = a + jp and s = o + jw, then the phase
velocity is w/p and the group velocity is dw/dB.

Suppose the system governed by Egs. (A.18) is
simulated using the centered-difference scheme introduced
in Chapter V. According to this scheme, Egs. (A.18)

transform to the partial-difference equations

= Kby = L, 8, U + Ru u U
~ K0, U = Cl, 8D + Gl i, D (A.22)
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where ua is the averaging operator in the ¢ direction and
aa is the central-difference operator in the q direction.

The solution to these equations can be expressed
as a summation (or integral) over modes of the form
p(kax,nat) p(v,z)
- vz (A.23)
U(kAx,nAt) T(v,z)

Substituting Eq. (A.23) into Egs. (A.22) gives

- §%§(1+z’l)(1-v'l)§ = 5%5(1+v'1)(1-z'1)ﬁ + %(1+v"l)(1+z'l)ﬁ
- g1 (v hY = Sy (-2 E + Fawh) (142715
(A.24)
or,
= (v+l = (z+l> L+ R i °
<z+1> Cre & <v+l> o] |o
(A.25)

Equation (A.25) has a nontrivial solution if and only if the

determinant of the coefficient matrix vanishes so that

I:Ax (v+1 ] [At (z+l> b+ R] [At (EFI) ¢+ G]

(A.26)
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Equation (A.26) is the dispersion relation for the
difference Egs. (A.22) and is identical to the dispersion
relation (A.21) for the partial-differential Egs. (A.18)

under the bilinear transformations

-2 (z-1
s = 5 (51) (r.27)

The continuous-variable system (A.18) is therefore related
to the digital system (A.22) by the mapping (A.27).

It will now be shown that in the limit of no
losses, the partial-differential Egs. (A.18) are simulated
exactly by the partial-difference Eqs. (A.22) when the

sampling rates are chosen such that
Ax = cAt (A.29)

This condition on the sampling rates is equivalent to
requiring that the sample points lie on a characteristic
net as described in Chapter V.

The modes of the solution to the partial-
differential Egs. (A.18), evaluated at the net points, is
given by Egs. (A.19) and (A.21) with x = kAx and t = nAt

i.e.,

p(kAx,nAt) p('}’:S)
o YAXk+s Atn

1l

(A.30)
U(kAx,nat) U(y,s)



where

»° = (Ls+R) (Cs+G). (A.31)

In the limit of the loss-free case, R = G = 0 and

¢ = 14/LC so that Eq. (A.31) reduces to

y =% s/c. (A.32)

Equation (A.32) is a linear dispersion relation implying
nondispersive plane-wave propagation with both phase and
group veloclty given by c.

The modes of the solution to the loss-free partial-
difference equations is given by Egs. (A.23) and (A.26)
with R =G = 0 and ¢ = 1A4/LC, i.e.,

p(kax, nAt) p(v,z)
= vz (A.33)
U(kox, nAt) T(v,2)
where
v-1\ _ AX z-1
<v+l> = * cat <z+1 (A.34)
Letting
v = e? X (A.35)
and
s’At
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allows Eq. (A.34) to be written as

’
tanh 2% = + & tanp 5.4t (A.36)

Invoking the condition of the characteristic net, Ax = CAt,

gives

y' =% s'/c (A.37)

which is identical to the dispersion relation (A.32) for
the original partial-differential equations for -m < Im
(y8x) < 7 and -7 < Im(sAt) < 7. Hence the simulation is
exact.

Intuitively, this result can be interpreted as
follows. Letting y = a + jB and s = jw, the real and

imaginary parts of Eq. (A.32) are

a=20

B =% w/c (A.38)

and the real and imaginary parts of Eq. (A.35) are

’
tanh GQAX =0
! ’
tan QEQE = * é%f tan wEAt. (A.39)

Using a = o' = O and substituting Egqs. (A.35) into
Egs. (A.27) gives
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_ 2 B’ &x
B = 73
2 w’'At
w = ZE tan —2— (A.)-LO)

so that the frequency and wave number of the continuous-
variable system are related to the frequency and wavenumber
of the discrete-variable system by the tangential-warping
functions (A.40) introduced by the bilinear transformation
of the frequency spaces. If Ax = cAt then Eg. (A.39)
reduc2s to Eq. (A.38). In other words, the choice of a
characteristic net results in tangential warping of the

B and w axes such that the dispersion relation, B vs. w.
remains invariant.

The analytical approach presented here provides a
useful suppliment to the classical numerical analysis
approach to constructing discrete-variable simulations of
continuous systems. Whereas the classical numerical-
analysis approach typically characterizes a simulation
according to an error term which vanishes faster than some
power of the sampling interval, the approach presented here
allows direct comparison, in the frequency domain, of the
continuous system and its discrete-variable simulation.
Such a comparison is often more useful and provides more
insight into the nature and consequences of the discrete-
variable approximation than a simple bound on an error

term.



APPENDIX B

An In-Place Algorithm for the Solution of a Class

of oparse Linear Algebraic Equations.

138.

When the trapezoid rule is applied to a two-point

boundary-value problem for a system of two coupled first-

order ordinary linear differential equations, or when the

centered-difference scheme is applied to a two-point

boundary-value problem for a system of two coupled first-

order linear (hyperbolic) partial-differential equations,

a system of simultaneous linear algebraic equations

HC = D

(B.1)

results. The coefficient matrix H is a sparse matrix of

the form

) by

hoy Bop o3 By,

Bg) P3p P33 By
B3 By Bys Mg
Bs3 By, Po5 Pog

E: [ ]

hoy-2,2n-3 Pon-2,2N-2

hoN-1,28-3 Pen-1,2N-2

hoy-2,on-1 Pon-2,2N

Bon-1,28-1 Pon-1,2n

h h

2N,2N-l 2N,2N

1D A\
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(where N is the number of sample points on the interval
including the two boundary points).
An efficient algorithm based on an adaptation of

39,40

Gauss's algorithm will now be developed for solving
Eq. (B.1). It is well known, that an arbitrary square
matrix H can be decomposed as the product of a lower-
triangular matrix L and an upper-triangular matrix U. More-
over, if H is nonsingular, then the decomposition can be
made unique by specifying the diagonal elements of either
L or 2.39 We show, by construction, that if H is nonsingu-
lar and of the form given by Eq. (B.2) then H can be fac-
tored as the product

H=LU (B.3)

where L and U are triangular matrices of the form

T
L2l 1
L3l &32 1
t 1
t53 tsy 1
L - tes 1

toy-2,on-3 1
ton-1,2n-3 ton-1,2n-2 1

-
(B.4)
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and

[uy; upp
Uop o3 Yo
Y33 3L
Ul Yus Mg
55 "6
U = Y66 Y67 68

Uon-2,o8-2 YoN-2,2N-1 “2N-2,2N
UoN-1,2N-1 “2N-1,2N

YoN, 2N

(B.5)
The elements of L and U can be determined by

assuming that L and U are of the form given above and

considering the nonzero elements in the matrix product LU

given by

hyy = z&ikukj : (B.6)
k

Starting with

h = u

hyp = Uy 12

11 12 (B-7)

and proceeding row-wise, the nonzero Lik and ukj can be

computed sequentially from the hij as follows:
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Yekel T Pig k1M1, ko1

Yk = Pk 7 tk,ke1 Yk-1Lk

U, ktl © Pk, ktl

W, ka2 = Dy, keo
Yl k-1 T Prel,ke1/Uko1, k-1
Yerik T (Peen, k™ et ko1 ko1, k) Mk
Ut kel ~ kel kel T kel k Uk, kel
Yol kt2 T Pirl, ko2 T a1,k Uk, ke2
for
k = 2,4,6,... 2N-2 (B.8)
and
fon,oN-1 = Poy,on-1/Von-1,2n8-1
Yan,2n = Pon,on T tew,en-1 Yen-1,2n (B.9)

Observe that this precedure can fail only if one
o¢r more of the diagonal elements ot U vanish. Since L and

U are triangular matrices
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det

e
I
-

det U = n Uy 4
and
det H = det(LU) = H;ull

Therefore, the procedure can fail only if det H = 0 i.e.,
only if the matrix H is singular.

Once the elements of L and U have been determined,
the solution vector € can be found in two steps. Define an

auxillary vector T such that

HE = (WU)L = b
or
In =B (B.10)
and
UL =1 (B.11)

Since L is lower triangular, the solution to Eq.

(B.10) can be written by inspection:
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ﬂl = b,

Me =P = b pr M

et = Pl ™ ki, k-1 Mol ” Ykel,k Tk

Moy = Poy = ton,2n-1 Mon-1 (B.12)

for
k = 2,4,6,...,2N-2.

Similarly, since U is upper triangular, the solu-

tion to Eq. (B.ll) can be easily written as

Lon = Mon/Uoy, on

Ckt1 = (nk+1’uk+1,k+eck+2)/uk+1,k+1

Ge = (MW e S Y, k2 Skr 2) MYk

¢ = (Mmuplp)/ayy (B.13)
for
K = 2N-2,...,6,4,2,

Equations (B.7-B.9) and (B.12-B.13) provide the
desired algorithm for solving Eq. (B.l). Before imple-
menting this algorithm on a machine, several observations
can be made to facilitate the programming. First, the
elements of the (2Nx2N) matrix H can be stored compactly
in a (2Nx4) array. Since the diagonal elements of the matrix
L are all unity, there are only a total of (8N-4) elements

in L and U which must be stored. Moreover, the computation
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of these elements can be carried out in place, i.e., as
each Lij and uij is computed, in the order specified by
the algorithm, it can be stored in the location occupied
by the corresponding element hij of the coefficient matrix.
The ith component, ni’ of the auxillary vector may be
computed during the ith iteration of the matrix factoriza-
tion loop, i.e., immediately following the computation of
the ith row of U. If it is desired to solve Eq. (B.l)

only once using a particular choice of H and b, then it

i1s not necessary to save the elements of L, provided the
elements of T are computed during the factorization loop
as mentioned above. However, if Eq. (B.l) is to be solved
more than once, using a particular H for several choices
of b, then the elements of L and U are saved, so that for
each b it is only necessary to recompute the auxillary

- vector 1] and the solution vector (. Finally, for the
equations of interest in this thesis, viz., Egs. (4.20 and
7.6), some additional computational savings may be achieved
by exploiting the fact that half of the nonzero elements

in these coefficient matrices are plus or minus unity.
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